平成8年度

マイクロマシンの基礎技術の研究

〔概要編〕

平成9年3月

財団法人 マイクロマシンセンター

平成8年度 マイクロマシンの基礎技術の研究 〔概要編〕

発 行 財団法人マイクロマシンセンター

東京都千代田区神田司町2-2 新倉ビル5階

電話: 03 (5294) 7131

概 要 編 目 次

[概		要	編]																			
第:	1 1	章	調査	研	究の	目的	j	•••••	•••••	•••••	• • • • • • •	•••••	•••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	G1
第2	2 1	章	調査	研	究の	実施	方法	•••••	•••••	•••••	• • • • • • •	••••	•••••	••••	••••	••••	••••	••••	• • • • •	••••	••••	••••	G2
第:	3 1	章	調査	成!	果の	概要	····	•••••	•••••	•••••	•••••	••••	•••••	••••	••••	••••	••••	••••	• • • • •	••••	••••	••••	G5
3	3.	1	マ	1:	クロ	機構	の動	的計	測法	に関 [・]	する	調査	研究	•	••••	••••	••••	••••	••••	••••	••••	••••	G5
3	3.	2	マ	イ:	クロ	デバ	イス	の組	立手	法に	関す	る調	查研究	宪	••	••••	••••	••••	• • • • •	••••	••••	••••	G8
3	3.	3	医	療	用マ	イク	ロマ	シン	材料	に関	する	淍査	研究	•	••••	••••	••••	••••	• • • • •	••••	••••	••••	G12
3	3.	4	ノヾ	イ;	オセ	ンサ	材料	に関	する	調査	研究	••••	•••••	••••	••••	••••	••••	••••	• • • • •	••••	••••	••••	G15
3	3.	5	1	ン	テリ	ジェ	ント	材料	・のマ	イク	ロマ	シン	へのi	商月	用に	関	する	調	查研	究	••	••••	G17
3	3.	6	バ	イ;	オミ	メテ	イツ	ク駆	動機	構と	その行	制御	に関す	} ;	る訓	自查	研究	₹	• • • • •	••••	••••	••••	G20
3	3.	7	マ	イ:	クロ	マシ	ンの	制御	手法	に関	する	調査	研究	•	••••	••••	••••	••••	••••	••••	••••	••••	G23
			欠紹力																				
はし	ه ژ	めに	•••••	••••	••••	,	•••••	•••••	· • • • • • •	•••••	•••••	••••	•••••	•••	• • • •	••••	••••	••••	••••	••••	••••	••••	(9)
調了	£Ą	开究	の実	施	方法	÷	•••••	•••••	• • • • • •	•••••	•••••	••••	•••••	•••	••••	••••	••••	••••	••••	••••	••••	••••	(10)
第二	直	章	マイ	ク	口機	構の	動的	計測	法に	関す	る調	査研	究 …	•••	••••	••••	••••	• • • • •	••••	•••••	••••	•••••	1
1	Ι.	1	緒	i i	言…	•••••	•••••	•••••	•••••	• • • • • • •	•••••	•••••	•••••	•••	••••	••••	••••	• • • • •	• • • • •	•••••	••••	••••	3
1	ι.	2	変	位(の動	的計	-測 ・	•••••	•••••	• • • • • • •	•••••	•••••	••••••	•••	••••	••••	••••	••••	••••	••••	••••	••••	5
		1.	2.	1	光	心用	測定		•••••	• • • • • • •		•••••	•••••	•••	••••	••••	••••	• • • • •	••••	••••	••••	••••	5
		1.	2.	2	画	像応	用測	定・	•••••	•••••	•••••	•••••	•••••	•••	••••	••••	••••	• • • • •	••••	••••	••••	••••	9
		1.	2.	3	ま	とめ	····	•••••	•••••	•••••	•••••	••••	••••••	••••	••••	••••	••••	••••	• • • • •	••••	· • • •	••••	14
	ι.	3	カ	の	動的]計測	J	•••••	•••••	•••••	•••••	••••	•••••	••••	••••	••••	••••	••••	••••	••••		•••••	16
		1.	3.	1	13	はじめ	に	• • • • • •	•••••	•••••	•••••	••••	•••••	••••	••••	••••	••••	••••	••••	••••	• • • •	•••••	16
		1.	3.	2	A	FM.	さ用 涯	ll定·	•••••	•••••	• • • • • •	••••	• • • • • • • • • • • • • • • • • • • •	••••	••••	••••	••••	••••	••••	••••	• • • • •	•••••	16
		1.	3.	3	٤	゚゚゚゚゚エソ	゙ セン	サ・	•••••	•••••	• • • • • •	•••••	•••••	••••	••••	••••	••••	••••	••••	••••	••••	•••••	19
		1.	3.	4	ノ	・イォ	·関連	<u> </u>	•••••	•••••	•••••	••••	•••••	••••	••••	••••	••••	••••	••••	••••	• • • • •	•••••	24
		1.	3.	5	z	の他	2の原	理に	よる	力計	測·	••••	•••••	• • • •	••••	••••	••••	••••	••••	••••	••••	• • • • •	28
		1.	3.	6	7	ィイク	ロト	ライ	ボロ	ジ関	連研	究	•••••	••••	••••	••••	••••	••••	••••	•••••	••••	•••••	30
		1.	3.	7	ま	ミとめ	と今	後期	持さ	れる	計測	法	•••••	• • • •	••••	••••	••••	••••	••••	••••	• • • • •	•••••	40
	1	1	l.	11	א מ	新的	1 計 湘	١					•••••							••••	• • • • •	• • • • •	43

	1		5		温	度の)動的計測	50
		1		5		1	はじめに	50
		1	•	5	•	2	放射温度計の測定原理および仕様	52
		1	•	5		3	アルミニウム面の放射率測定および温度補正データベースの作成 …	53
		1		5	•	4	測定方法	54
		1		5	•	5	測定結果	56
		1	•	5		6	ロータ翼表面温度測定	58
		1	•	5		7	測定結果	59
	1		6		圧	力の	動的計測	70
	1		7		特	徴的]な動的計測法	72
		1	•	7		1	はじめに	72
		1	•	7		2	静電アクチュエータとその応用可能性	72
		1		7		3	薄膜形状記憶合金の利用可能性	75
		1	•	7		4	超音波による物性測定	77
	1		8		W	WW	による情報収集	80
		1	•	8		1	はじめに	80
		1		8		2	アメリカ・カナダの状況	80
		1		8		3	ョーロッパにおける拠点	84
		1		8		4	まとめ	91
	1		9		結	言	· · · · · · · · · · · · · · · · · · ·	92
第	2	章		マ	ィ	クロ	デバイスの組立手法に関する調査研究	93
	2		1		緒	言	· · · · · · · · · · · · · · · · · · ·	95
	2		2		微	細作	·業······	97
		2		2		1	微細作業の定義	97
		2		2		2	微細作業の必要性	99
		2		2		3	微細作業に関する研究・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	100
		2	•	2		4	微細作業の特徴	106
		2		2		5	微細作業実現のための手段	108
	2		3		微	細作	:業システム構成法	112
		2	•	3		1	微細作業システムに対する要求機能	112
		2	_	3		2	微細作業システムに対する制約条件	116

		2.	3		3	微細作業システムの構成法:集視構成	117
	2.	4		電	子顕	微鏡内作業システムの構築	122
		2.	4		1	全体構成	122
		2.	4		2	顕微鏡部	127
		2.	4		3	マニピュレータ部	128
		2.	4		4	作業台部	131
		2.	4		5	ヒューマンインターフェース	132
		2.	4		6	制御システム	136
	2.	. 5		微	細作	業のモデル化	139
		2.	5		1	微小体に働く力	139
		2.	5		2	微小体に働く微小力の測定	147
		2.	5		3	電子顕微鏡内における静電力	150
		2.	5		4	電子顕微鏡下における微細作業の力学モデル	163
	2.	. 6		微	小物	のハンドリングの実現	
		2.	6		1	微小な対象物の把持・離脱	169
		2.	6	•	2	微細作業におけるハンドリングスキル	
		2.	6		3	接触面積減少法	174
		2.		-		接触面積置換法	
		2.	6		5	ハンドリングスキルのまとめ	189
	2	. 7		結	言		
		2.	7	•	1	本調査研究のまとめ	191
		2.	7	•	2	今後の展開	193
第						イクロマシン材料に関する調査研究	
	3	. 1		緒	言		197
	3	. 2		セ	グメ	ント化ポリウレタンの化学修飾	200
		3.	2	2.	1	不活性なタンパク質の選択的吸着を目的とした表面修飾	200
		3.	2	2.	2	生体成分の吸着及び粘着抑制を目的とした表面修飾	201
		3.	2	2.	3	生理活性分子の固定化によるSPUの血液適合性改善	203
		3.	2	2.	4	血液適合性ポリマーの被覆	206
		3.	2	2.	5	両親媒性ポリマーのブレンドによるSPUの表面改質	206
	3	3	1	1)	ン脂	≦質ポリマーの血液適合性	208

	3.	,	4		新	しい	高分子添加材としてのMPCポリマー	212
		3 .		4	•	1	脂肪族のハードセグメントを持つSPUに対する添加材としての	
							MPCポリマー	213
		3 .		4		2	芳香族のハードセグメントを持つSPUに対する添加材としての	
							MPCポリマー	218
	3 .	•	5		SP	U/	MPCポリマーブレンド膜の血液適合性	222
	3 .		6		医	用ェ	ラストマーに力学的変形を連続的に負荷する装置の試作と医療用	
					マ	イク	ロマシン材料評価への応用	226
		3	•	6		1	試作装置の概要	226
		3		6		2	連続的歪み負荷時のMPCブレンド膜のin vitro特性試験 ···············	228
	3 .		7		SF	·U/	´MPCポリマーブレンドの加工性	232
	3		8		結	擅		233
第	4	章		バ	1	オセ	:ンサ材料に関する調査研究	235
	4		1		緒	Ē		237
	4		2		メ	ディ	エーター	239
		4		2		1	生物における電子伝達・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	241
		4		2		2	ヘテロシステムメディエーター	242
		4		2		3	導電性有機塩の電極利用	243
		4		2		4	修飾酸化還元酵素 ······	243
		4		2		5	最後に	244
	4	•	3		固	定化	工生体触媒(Immobilized biocatalyst)	246
		4		3		1	固定化生体触媒の意義	246
		4		3		2	固定化生体触媒の歴史	247
		4		3		3	固定化法の概略	248
		4		3		4	バイオリアクターとバイオセンサー	252
		4		3		5	バイオリアクターの各種工業への応用	253
		4		3		6	マイクロバイオセンサーの例	261
	4	•	4		環	境用	バイオセンサーへの応用	264
		4		4		1	緒 言	264
		4		4	•	2	リン酸測定用バイオセンサー	265
		4		4		3	シアン測定用バイオセンサー	270

	4 .		5		IJ	ン	酸	測	定	用	化学	学多	そナ	匕枝	食 上	₩ ₹	틴,	パ	イ :	∤ ·	セ	ン	サ	<u> </u>	の	開発	<u> </u>	••••	••••	••••	••••	•••••	••••	281
		4.	,	5	•	1		化	学	発力	光相	食 と	出西	켙기	ヾノ	1 >	† ·	セ	ン・	サ・	_	•	• • • •	••••	••••	••••	••••	••••	••••	•••••	••••	•••••	••••	281
		4.		5		2		化	学	発力	光相	食と	出西	켙 /	ヾノ	1 >	オ・	セ	ン・	サ・	— i	改.	良	法	の材	検討	† ···	••••	••••	•••••	••••	•••••	•••••	289
	4.		6		シ	ア	ン	測	定	用征	微点	主生	勿七	とこ	/ +	ナ -	- (の	荆	発		•••	• • • •	••••	• • • •	••••	••••	••••	••••	•••••	••••	•••••	••••	300
		4.		6	•	1		微	生	物·	セこ	ン!	ナ -	_	•••	•••	•••	• • • •	· · · ·	•••	•••	•••	• • • •	••••	••••	••••	••••	••••	••••	•••••	••••	•••••	••••	300
		4.	•	6	•	2		フ	口	<u> </u>	型:	シフ	? :	ノ狙	们元	包月	目	溦	生生	勿·	セ	ン	サ	<u> </u>	の	開発	<u>k</u>	••••	••••		••••	•••••	••••	306
		4.	,	6		3		河)П;	水	測知	定月	月得	改占	生生	勿:	ン・	r	ン・	t	ン	サ	_	の	荆	発・	••••	••••	••••	•••••	••••	•••••	••••	313
		4.		6	•	4		化	学	発:	光村	负知	扣型	24	孝ラ	表:	ン・	7	ン・	セ	ン	サ	_	の	荆	発・	••••	••••	••••	•••••	••••	•••••	••••	325
	4 .		7		小	型	酸	素	電	極	を月	用し	٦ ٦	3 E	3O	D.	セ	ン	サ	_	•	•••	••••	••••	• • • •	••••	••••	••••	••••	•••••	• • • • •	•••••	••••	339
	4 .		8		結	:	言		•••	••••	••••	•••	••••	•••	•••	•••	•••	•••	• • • •	•••	•••	•••	•••	••••	• • • •	••••	••••	••••	••••	•••••	••••	•••••	•••••	343
第	5	章		1	ン	テ	IJ	ジ	ェ	ン	トオ	才米	40	りっ	7 -	1 :	ク		マ	シ	ン	^	の:	適月	用	に良	す	る言	周查	研多	完·	•••••	••••	345
																																•••••		
	5 .																															•••••		
		5 .		2		1		マ	1	ク	ο.	マ:	シ:	V 0	DΞ	見丬	犬	•••	•••	•••	•••	•••	•••	••••	•••	• • • • •	••••	••••	••••	•••••	••••	• • • • • •	•••••	350
		5 .	•	2		2		マ	1	ク	Π.	マ:	ン:	ンド	月木	才	臼	に	要:	求	さ	れ	る	特	生	おし	くび	材料	料の	加工	I/	/		
								•																								• • • • • •		
																																• • • • • •		
																																•••••		
	5																															• • • • • •		
																																•••••		
																																•••••		
																																•••••		
		5																														•••••		
																																•••••		
																																•••••		
		5																														•••••		
			1		1	ン	/ テ	- IJ	ジ	エ	ン	۲,	バ、	イ :	才	マ	テ	IJ	ア	ル		•••	• • • •	••••	•••	••••	• • • •	••••	••••	••••	••••	•••••	•••••	433
			2																											リジ				
						-																										•••••		
		5	_	3		6	i	ı	: ネ	ル	ギ	_	関:	連	材	料	• •	• • • •	• • • •	•••	•••	• • • •	• • • •	• • • •	• • • •	••••	• • • •	••••	• • • • •	•••••	••••	•••••	•••••	450

第	6	章	バ	1	オミ	メティック駆動機構とその制御に関する調査研究	459
	6	. 1	;	緒	言	······	461
	6	. 2		昆	虫の	行動	463
		6.	2 .		1	昆虫の行動と神経系	463
		6.	2 .	•	2	昆虫の筋肉	464
		6.	2 .		3	昆虫の飛翔運動	469
		6.	2 .	•	4	昆虫の歩行運動	477
	6	. 3	:	空	気圧	アクチュエータとフルイディスクを利用した飛行機構	483
		6.	3 .	•	1	蝶を規範とした翅の研究・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	483
		6.	3 .	•	2	空気圧アクチュエータ	487
		6.	3	•	3	フルイディスクを用いたはばたき制御	490
		6.	3 .	•	4	今後の課題	500
	6	. 4	:	論	理回]路によるマイクロロボット制御	502
		6.	4		1	昆虫を規範とした運動制御	502
		6.	4	•	2	論理回路による6足歩行制御	503
		6.	4	•	3	論理回路で駆動可能な静電マイクロアクチュエータ	506
		6.	4	•	4	論理回路で制御可能なマイクロシステム	511
	6	. 5		複	眼セ	・ンサにおける振動網膜システム	515
		6.	5		1	視覚認知の生物学的なアプローチ	515
		6.	5	•	2	網膜振動センサによる障害物回避	519
		6.	5		3	反射的な「ジグザグ」行動による障害物回避のシミュレーション …	521
		6.	5		4	実機による実験	523
		6.	5		5	複眼センサの小型化	526
	6	. 6		シ	ミ ュ	. レーションによる行動の研究	535
		6.	6		1	行 動	535
		6.	6		2	人工生命 (Artificial Life)	535
		6.	6		3	遺伝アルゴリズム	537
		6.	6		4	ロボット工学におけるシミュレーションの役割	539
		6.	6		5	昆虫の生体機能を利用したロボット	540
		6.	6	•	6	CGアートやコンピュータゲームにおける生物行動の	
						シミュレーション	541
	6	. 7		結	Ī	<u></u>	545

第	7	章	Ĺ	マ	1	クロ	マシンの制御手法に関する調査研究	547
	7		1		緒	言		
		7	•	1		1	はじめに	549
		7	•	1		2	調査研究活動方針	549
	7	•	2		自	律移	動ロボットの障害物回避とマイクロマシンの環境認識	551
		7	•	2	•	1	はじめに	551
		7	•	2		2	障害物回避動作計画システム	553
		7	•	2		3	実 験	
			•				まとめ	
	7		3		分	散マ	イクロマシンの信号処理	
		7		3	•	1	はじめに	570
		7		3		2	制御対象とするマイクロマシン	
		7		3		3	M E M S の制御 ······	572
		7	· .	3		4	信号の伝達手法	
		7	' .	3		5	信号の種類	574
		7	7.	3		6	分散型マイクロ運動システムの例-分散型マイクロ搬送システム …	
			7.				おわりに	
	7		4		ソ	リト	・ンとマイクロマシンの信号伝達	
		7	7.	4		1	はじめに	
		,	7.	4		2	回路構成	
		•	7.	4		3	信号波形のシミュレーション	581
		,	7.	4		4	おわりに	583
	7		5		群	口力	ボットにおける相転移現象の誘発	584
		,	7.	5	j .	1	はじめに	
		,	7.	5	·	2	液晶概説	
			7.	5	.	3	問題設定	
			7.	5	5.	4	衝突した時の確率密度関数の時間発展	586
			7.	Ę	5.	5	衝突しない時の確率密度関数の時間発展	
			7.	Ę	5.	6	確率密度関数の時間発展・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	588
						7		
			7.	Ę	5.	8	シミュレーション	591
			7		_	0	+: + h !-	592

7	. 6	;	超精	宇密	作業ミニロボット群による共同作業の計測と制御について	593
	7.	6 .	. 1		はじめに	593
	7.	6 .	. 2	2	研究の背景	593
	7.	6	. 3	3	基本構想	595
	7.	6	. 4	ļ	小型の精密移動機械	597
	7.	6	. 5	5	微細加工と精密測定の試み	599
	7.	6	. 6	5	まとめ	610
7	. 7		個体	ķ発	生過程を用いた大規模システムの一創発的生成法	611
	7.	7	. 1		はじめに	611
	7.	7	. 2	2	これまでの研究	611
	7.	7	. 3	3	個体発生過程の概要	612
	7.	7	. 4	ļ	提案する手法	615
	7.	7.	. 5	;	シミュレーション結果	621
	7.	7 .	. 6	5	まとめおよび今後の課題	623
7	. 8	;	結	言		625