添付資料1

1-1 RFスイッチ製造技術の開発

超小型、高信頼性で封止パッケージ化した高周波RFスイッチの製造技術の開発

出願特許

国内出願

番号	出願日	出願番号	名称	発明者
1	2003/10/31	2003-373208	接点開閉器および接点開閉器を備	積知範,宇野裕,増
			えた装置	田貴弘
2	2005/3/18	2005-080536	静電マイクロスイッチおよびその製	佐野浩二,木村勇,
			造方法、ならびに静電マイクロスイッ	城島正男
			チを備えた装置	
3	2005/3/14	2005-071692	配線基板の製造方法、フォトマス	政井 琢,佐野浩二
			ク、配線基板、回路素子、通信装	
			置、および計測装置	
4	2005/3/14	2005-071729	静電マイクロ接点開閉器およびその	増田貴弘,積知範
			製造方法、ならびに静電マイクロ接	
			点開閉器を用いた装置	
5	2005/3/11	2005-068633	接点支持機構、接点開閉器、計測	宇野裕,積知範,增
			装置及び無線機	田貴弘
6	2006/2/16	2006-039593	半導体装置の電気的接続構造及び	堀口奈都子,細谷克
			当該構造を備えた機器	己,佐野浩二
7	2006/1/25	2006-016973	静電マイクロ接点開閉器およびその	増田貴弘,積知範
			製造方法、ならびに静電マイクロ接	
			点開閉器を用いた装置	

外国出願

番号	出願日	出願番号	名称	発明者
1	2006/3/16	US 11/376972	静電マイクロスイッチおよびその製	佐野浩二,木村勇,
		CN 200610057057.0	造方法、ならびに静電マイクロスイッ	城島正男
		EP 06111046.6	チを備えた装置	
		TW 095105284		
2	2006/3/14	US 11/375518	静電マイクロ接点開閉器およびその	増田貴弘,積知範
		CN 200610064810.9	製造方法、ならびに静電マイクロ接	
		EP 06111126.6	点開閉器を用いた装置	
		KR 10-2006-0016569		
		TW 095108431		

3	2006/3/10	US 11/373521	配線基板の製造方法、フォトマス	政井 琢,佐野浩二
		CN 200610064816.6	ク、配線基板、回路素子、通信装	
			置、および計測装置	

1-2 光可動ミラー製造技術の開発

光スイッチの高精度加工技術の開発

出願特許

国内出願

番号	出願日	出願番号	名称	出願人
1	2004/12/14	2004-324625	光偏向器	オリンパス(株)
2	2005/2/7	2005-030643	静電気駆動素子	オリンパス(株)
3	2005/6/30	2005-191479	光スイッチ装置	オリンパス(株)
4	2005/12/27	2005-374322	波長選択スイッチ	オリンパス(株)

外国出願

番号	出願日	出願番号	名称	出願人
1	なし			

1-3 超小型MEMSセンサ製造技術開発

MEMSセンサの小型化、低コスト化とファンドリーサービス展開の為の製造技術の開発 出願特許

国内出願

番号	名称	出願人
1	貫通孔へのメッキ埋め込み方法及びメッキ装置	松下電工株式会社
2	貫通電極の形成方法	松下電工株式会社
3	貫通電極の形成方法	松下電工株式会社

4	半導体装置およびその製造方法	松下電工株式会社
5	半導体基板への貫通配線の形成方法	松下電工株式会社
6	半導体基板への貫通配線の形成方法	松下電工株式会社
7	半導体基板への貫通配線の形成方法	松下電工株式会社
8	MEMSデバイスおよびその製造方法	 松下電工株式会社
9	貫通孔配線の製造方法	松下電工株式会社
10	貫通孔配線及びその製造方法	松下電工株式会社
11	半導体ウェハへの貫通孔配線の形成方法、ウェハレベルパッケージ構造体の製造方法	松下電工株式会社
12	駆動装置及び光デバイス	 松下電工株式会社
13	半導体装置の製造方法、半導体アクチュエーター及び光デバイス	松下電工株式会社
14	半導体装置の製造方法	松下電工株式会社
15	半導体構造の製造方法、半導体アクチュエータ及び光デバイス	松下電工株式会社
16	半導体センサおよびその製造方法	 松下電工株式会社
17	センサエレメント	松下電工株式会社
18	ウエハレベルパッケージ構造体およびセンサエレメント	 松下電工株式会社
19	センサエレメントおよびウエハレベルパッケージ構造体	松下電工株式会社
20	ウエハレベルパッケージ構造体およびセンサエレメント	松下電工株式会社
21	ウェハレベルパッケージ構造体およびセンサエレメント	松下電工株式会社
22	センサ素子の製造方法	松下電工株式会社
23	センサエレメント	松下電工株式会社
24	ウエハ接合装置およびおよびウエハ接合装置	松下電工株式会社
25	センサ構造体	松下電工株式会社
26	フリップチップ実装方法	松下電工株式会社
27	実装方法	松下電工株式会社

28	半導体チップの実装構造、及びその実装方法	松下電工株式会社
29	スタッドバンプの形成方法	松下電工株式会社
30	半導体装置及びその製造方法	松下電工株式会社
31	半導体装置の実装方法	松下電工株式会社
32	半導体装置の実装方法	松下電工株式会社
33	センサパッケージ	松下電工株式会社
34	フリップチップ実装方法	松下電工株式会社
35	センサモジュール	松下電工株式会社
36	センサモジュール	松下電工株式会社
37	センサモジュールおよびその製造方法	松下電工株式会社
38	センサモジュール	松下電工株式会社
39	センサモジュールの製造方法、センサモジュール	 松下電工株式会社
40	センサモジュール	松下電工株式会社
41	センサモジュールおよびその製造方法	 松下電工株式会社
42	センサモジュール	松下電工株式会社
43	半導体センサおよびその製造方法	松下電工株式会社
44	半導体加速度センサ	松下電工株式会社
48	物理量センサ及びその製造方法	松下電工株式会社
45	半導体加速度センサ	松下電工株式会社
46	物理量センサ	松下電工株式会社
47	センサエレメント	松下電工株式会社

48	センサエレメント	松下電工株式会社
49	ウェハレベルパッケージ構造体およびその製造方法、加速度センサ	松下電工株式会社
43	クエバレ・ジャン・グラーン情担体やよびでいるを担力伝、加速反にアッ	位,电工体八云在
50	物理量センサ	 松下電工株式会社
51	物理量センサ及びその製造方法	 松下電工株式会社
52	角速度センサおよび角速度検出方法	松下電工株式会社
53	半導体センサおよびその製造方法	松下電工株式会社
54	角速度センサ及びその製造方法	松下電工株式会社
55	ジャイロセンサ	松下電工株式会社
56	半導体装置の製造方法	松下電工株式会社
57	センサ装置、センサシステム、センサ装置の製造方法及びセンサシステムの	松下電工株式会社
	製造方法	
58	半導体力学量センサ	松下電工株式会社
59	角速度センサ	松下電工株式会社
60	バーチカルコム及びこれを含むジヤイロセンサの製造方法	松下電工株式会社
61	ジャイロセンサ	松下電工株式会社
62	ジャイロセンサおよび角速度検出方法	松下電工株式会社
63	ジャイロセンサおよびそれを用いたセンサ装置	松下電工株式会社
64	角速度検出装置	松下電工株式会社
65	角速度検出装置	松下電工株式会社
66	微小電気機械デバイス	松下電工株式会社
67	微小電気機械デバイスの製造方法	松下電工株式会社
68	微小電気機械デバイス	松下電工株式会社
69	角速度検出装置	松下電工株式会社
70	角速度検出装置	松下電工株式会社
71	MEMSデバイスおよびその製造方法	松下電工株式会社
72	センサ装置	松下電工株式会社
73	センサ装置	松下電工株式会社
74	センサ装置	松下電工株式会社
75	センサ装置	松下電工株式会社
76	センサ装置	松下電工株式会社
77	センサ装置	松下電工株式会社
78	センサ装置	松下電工株式会社
79	センサ装置	松下電工株式会社
80	センサ装置	松下電工株式会社

81	微小電気機械デバイス	松下電工株式会社
82	微小電気機械デバイス	松下電工株式会社

外国出願

番号	名称	出願人
1	ウェハレベルパッケージ構造体、および同パッケージ構造体から得られるセ	松下電工株式会社
	ンサ装置	
2	ウェハレベルパッケージ構造体の製造方法	松下電工株式会社
3	センサ装置およびその製造方法	松下電工株式会社
4	ウェハレベルパッケージ構造体およびその製造方法	松下電工株式会社
5	センサ装置及びその製造方法	松下電工株式会社
6	センサ装置及びその製造方法	松下電工株式会社

1-4 MEMSデバイスの研究開発

1-4-1 スマートスキンの実現を目指す MEMS アレイとその信号接続方法の研究

出願特許

国内出願

番号	出願日	出願番号	名称	出願人
1	無し			

外国出願

番号	出願日	出願番号	名称	出願人
1	無し			

1-4-2 マイクロ走査型顕微鏡の研究開発

出願特許

国内出願

番号	出願日	出願番号	名称	出願人
1	平成17年5月出願	特願 2005-149907	変位測定装置	澤田廉士、 千野忠男

外国出願

番号	出願日	出願番号	名称	出願人
1	無し			

1-4-3 MEMS 技術を用いた小型多軸フォース・モーメントセンサの開発

出願特許

国内出願

番号	出願日	出願番号	名称	出願人
1	2006/6/19	2006-168391	加速度センサおよび加速度	学校法人立命館
			センサの製造方法	

外国出願

番	号	出願日	出願番号	名称	出願人
1		無し			

添付資料2

1-1 RFスイッチ製造技術の開発

超小型、高信頼性で封止パッケージ化した高周波RFスイッチの製造技術の開発

番号	発表日	発表先	題名	発表代表者
1	03/9/19	応用物理学会	RFMEMS と MEMS スイッチ	積知範
		SSDM2003		
2	03/11/28	IEICE	Ohmic-Contact RF MEMS Switch	積知範
		MWE2003		
3	04/3/16	電子情報通信学会エレク	RF-MEMS スイッチ	積知範
		トロニクスソサエティ・		
		電子デバイス研究会		
4	04/3/22	電子情報通信学会	MEMS を活用した可変手段	積知範
		総合大会		
5	04/10/27	IEEE 2004 CSIC	Recent Progress In Packaging of	積知範
		Symposium	RF MEMS	
6	05/3/17	電気学会	RF MEMS スイッチの	森口誠
			要素技術開発	
7	05/3/10	電気学会マイクロマシ	有接点 RF MEMS リレーの開発	積知範
		ン・センサシステム研究		
		会		
8	05/9/8	実装学会 2005 ワークショ	ウェハレベルパッケージングによる	佐藤正武
		ップ	10GHz 対応 RF MEMS スイッチの実現	
9	05/10/20	電気学会 第 22 回セン	パッケージプロセスの MEMS デバイス	成瀬浩司
		サ・マイクロマシンと応	への影響度評価手法	
		用システムシンポジウム		
10	05/10/21	電気学会 第 22 回セン	ウェハ回転方式による Si 異方性ウェット	井上勝之
		サ・マイクロマシンと応	エッチングの高精度化	
		用システムシンポジウム		
11	05/11/25	実装エレクトロニクス学会	MEMS における実装技術の役割と課題	森口誠
		関西ワークショップ		
12	06/5/16	電気学会マイクロマシ	有接点 SPDT RF-MEMS スイッチ用	増田貴弘
		ン・センサシステム研究	低電圧駆動静電アクチュエータの開	
		会	発	
13	06/9/13	応用物理学会	MEMS Packaging for RF switch	積知範
		SSDM2006		
14	06/10/05	電気学会第 23 回セン	低電圧・小型化を可能にする接触抵	増田貴弘
		サ・マイクロマシンと応	抗安定構造の有接点 RF-MEMS スイ	
		用システムシンポジウム	ッチ用アクチュエータの開発	

番号	発表日	発表先	題名	発表代表者
1	04/4/1	実装学会誌	RF MEMS パッケージ技術	佐藤正武
2	05/4/18	プラスチック成形加工学	RF MEMS パッケージ技術	佐藤正武
		会誌		
3	05/11/01	電子情報通信学会誌	RF MEMS スイッチ	積知範
4	06/2/1	電気学会論文誌 E 準部	有接点 RF MEMS スイッチ/リレー	積知範
		門	用静電駆動アクチュエータの開発	
5	06/4/17	Sensors and Actuators	Development of a large-force	積知範
		A: Physical, Elsevier	low-loss metal-contact RF MEMS	
			switch	

番号	発表日	発表先	題名	発表者
1	03/7/9	精密工学会·MEMS 商	RF-MEMS と実装技術	佐藤正武
		業化技術委員会/		
		JIEP・MEMS 実装技術		
		研究会合同研究会		
2	03/9/9	JST フォーラム第 20 期	RF-MEMS のキーテクノロジー	佐藤文彦
		第2回例会	とアプリ	
3	03/9/26	電気学会システム集積	RF-MEMS (スイッチ・リレー)	積知範
		プロセス調査専門委員	の最先端の動向	
		会		
4	04/3/1	(株)コスモ・リバティ社	RF-MEMS スイッチの構造およ	積知範
		Microwave Photonics	び応用事例	
		Products		
5	04/6/2,	KAST 講習会「マイクロ	RF-MEMS	佐々木昌
		マシン・MEMS 研究の		
		最新動向コース」		
6	04/7/22	京都ナノテククラスター	オムロンの MEMS 技術	佐藤文彦
		第 10 回 KYO-NANO		
		会		
7	04/11/24	精密工学会基礎講座	MEMS 技術の基礎	細谷克己
8	05/1/17	財MMC 主催	RF-MEMS(マイクロマシンドリレ	西尾英俊
		第4回 MEMS 講習会	ー)の設計技術	
		「MEMSの設計・加工		
		技術と応用例」		

9	05/2/22	日本学術振興会第 153	オムロンの MEMS 加工技術	西尾英俊
		委員会(プラズマ)		
		第70回研究会		
10	05/6/29	KAST 講習会「マイクロ	RF-MEMS	佐々木昌
		マシン・MEMS 研究の		
		最新動向 コース」		
11	05/7/22	社団法人新化学発展	MEMS デバイスおよびプロセス概	西尾英俊
		協会電子情報技術部	論	
		会講演会		
12	05/9/14	微細構造デバイス研究	オムロンにおける MEMS の開発	佐藤文彦
		開発フォーラム		
13	05/10/25	㈱電子ジャーナル主催	RF-MEMS ーその構造と製造技	西尾英俊
		シンポジウム 2005 秋マ	術一	
		イクロマシン/MEMS 徹		
		底検証		
14	05/11/15	精密工学会基礎講座	MEMS の基礎	細谷克己
15	05/11/30	姫路商工会議所	オムロンにおける MEMS 技術と応	細谷克己
			用商品	
16	06/2/28	㈱電子ジャーナル	オムロンの RF MEMS	宇野裕
		「2006 マイクロマシン・		
		MEMS技術大全」		
17	06/4/1	(株)シーエムシー出版	単結晶シリコンメンブレン型ス	佐野浩二
		「RF MEMS 技術の最前	イッチ	
		線 -ワイヤレス時代		
		のキーテクノロジー-」		
18	06/6/13	SEMI Forum JAPAN	RF MEMS デバイスの実装	積知範
		2006		
19	06/7/5	KAST 講習会「マイクロ	RF-MEMS	佐々木昌
		マシン・MEMS 研究の		
		最新動向コース		
		~ 基礎技術から応用		
		製品まで ~」		
20	06/9/6	(財)生産技術研究奨励	NEDO・MEMS プロジェクト	若林秀一
		会平成 18 年度第 3 回	RF-MEMS スイッチに関する研	
		奨励会特別研究委員	究成果	
		会		

1-2 光可動ミラー製造技術の開発 光スイッチの高精度加工技術の開発

番号	発表日	発表先	題名	発表者
1	2003, 9, 29	KSP セミナー「マイクロ	医療用マイクロマシンおよび	三原 孝士
		マシン・MEMS 研究の	MEMS 技術	
		最新動向」		
2	2003, 9, 18	多摩中小企業振興セ	オリンパスのマイクロ化戦略	小川 治男
		ンター		
3	2003, 9, 12	JAIMA セミナー	ライフサイエンス分野におけるマイ	小川 治男
			クロ化技術の戦略	
4	2003, 8, 06	化学工学会	オリンパスの MEMS の取り組みとフ	三原 孝士
			ァンドリーの紹介	
5	2003, 7, 18	MMC セミナー	MEMS ファンドリーサービス産業委	三原 孝士
			員会活動報告	
6	2003, 7, 18	MMC セミナー	光 MEMS の設計技術	坂田 芳男
7	2003, 6. 25	SEMil マイクロマシンセ	光 MEMS の実用化と今後の動向	宮島 博志
		ミナー		
8	2003, 10, 28	電子ジャーナルセミナ	マイクロマシン/MEMS 試作サービ	太田 亮
		_	ス	
9	2004, 7, 21	MMC セミナー	光 MEMS の設計製造技術	太田 亮
10	2004, 7	日経マイクロデバイスセ	オリンパスの光 MEMS 技術	太田 亮
		ミナー		
11	2005, 2	化学工業会研究会	MEMS加工技術とその課題	太田 亮
12	2005, 7	MMC セミナー	光 MEMS の設計製造技術	宮島 博志
13	2005, 10, 5	名古屋大学研究会	MEMS optical scanner for	宮島 博志
			commercial laser scanning	
			microscope	
14	2005, 9, 12	エレクトロニクス実装学	MEMS 光スキャナーとその応用	宮島 博志
		会		
15	2005, 11, 14	精密工学会 マイク	光MEMS -近況およびオリンパス	宮島 博志
		ロ/ナノシステム研	の取り組み	
		究専門委員会		
16	2006, 1, 19	MMC セミナー	光 MEMS の設計製造技術	宮島 博志

番号	発表日	発表先	題名	発表者
1	2003, 7. 15	次世代センサー	オリンパスの MEMS ファンドリーサ	太田 亮
			ービス	
2	2003, 7. 15	次世代センサー	MEMS ファンドリーネットワーク	三原 孝士
3	2003, 11, 20	2003 International	"Current Issues of MEMS	太田 亮
		Symposium on	Foundry Network in Japan"	三原 孝士
		Micromechatronics		
		and Human Science		
4	2003, 11, 30	静電気学会誌	マイクロマシンの光応用	三原 孝士
5	2003, 11, 05	精密工学会誌	MEMS ファンドリーネットワーク	三原 孝士
6	2004, 9, 05	精密工学会誌	光 MEMS 設計製造技術	宮島 博志
				太田 亮
7	2005, 2	光学コンタクト	光 MEMS の設計製造技術	太田 亮
				宮島 博志
8	2005、2	日経マイクロデバイス	オリンパスの光 MEMS 技術	太田 亮

番号	発表日	発表先	題名	発表者
1	2003, 11	マイクロマシン展	MEMS ファンドリーと光 MEMS	片白 雅浩
2	2004, 2	ナノテク展	MEMSPJ 紹介	太田 亮
3	2004, 11	マイクロマシン展	MEMS ファンドリーと光 MEMS	片白 雅浩
4	2005. 1	FOE	MEMS ファンドリーと光 MEMS	片白 雅浩
5	2005, 2	ナノテク展	MEMSPJ 紹介	太田 亮
6	2005. 2	Photonic West	MEMS ファンドリーと光 MEMS	片白 雅浩
7	2006. 3	OFC	MEMS ファンドリーと光 MEMS	片白 雅浩
8	2005, 11	マイクロマシン展	MEMS ファンドリーと光 MEMS	片白 雅浩
9	2006, 2	ナノテク展	MEMSPJ 紹介	太田 亮
10	2006. 3	OFC	MEMS ファンドリーと光 MEMS	片白 雅浩
11	2006, 10	週間ナノテク	光 MEMS で通信事業に本格参入	片白 雅浩
12	2005, 10	電子ジャーナル	マイクロマシン/MEMS その現在	太田 亮
			と未来を語る	
13	2006, 11	マイクロマシン展	光通信用WSSモジュール	片白 雅浩
14	2004。11	長野新聞	オリンパスのMEMSファンドリーサ	唐津 和裕
			ービス	
15	2005. 4	電波新聞	オリンパスのMEMSファンドリーサ	小川 治男
			ービス	
16	2006, 4	オリンパス HP	米国 M 社と光通信向け MEMS を	片白 雅浩

			供給するために合弁会社設立	
17	2006, 4	日刊工業新聞	米国 M 社と光通信向け MEMS を	片白 雅浩
			供給するために合弁会社設立	
18	2006, 4	日経産業新聞	米国 M 社と光通信向け MEMS を	片白 雅浩
			供給するために合弁会社設立	
19	2006, 4	日経新聞	米国 M 社と光通信向け MEMS を	片白 雅浩
			供給するために合弁会社設立	

1-3 超小型MEMSセンサ製造技術開発 MEMSセンサの小型化、低コスト化とファンドリーサービス展開の為の製造技術の開発

学会発表

番号	発表日	発表先	題名	発表者
1	2006/12/7	THE13TH	Through-Hole Interconnection	松下電工株式会社
	(口頭発表)	INTERNATIONAL	in Si Substrate for Wafer Level	鎌倉
		DISPLAY	Package	
		WORKSHOPS		
		(IDW'06)		
2	2006/9/14	The International	MEMS Wafer Level Packaging	松下電工株式会社
	(口頭発表)	Conference on Solid	by Using Surface Activated	竹川、馬場、奥戸、
		State Devices and	Bonding	鈴木
		Materials (SSDM)		
3	2005/2/3	溶接学会	低残留応力化に向けた表面活性	松下電工株式会社
	(口頭発表)	マイクロ接合研究委員会	化フリップチップ実装プロセスの開	佐名川
		シンポジウム Mate2005	発	
4	2005/11/17	合同マイクロメカトロニ	表面活性化常温接合を用いた	松下電工株式会社
	(口頭発表)	クス実装研究会	MEMS 低応力実装法	佐名川
5	2006/2/2	溶接学会	セラミック基板への表面活性化	松下電工株式会社
	(口頭発表)	マイクロ接合研究委員会	常温フリップチップ実装プロセ	植田
		シンポジウム Mate2006	スの開発	

論文

番号	発表日	発表先	題名	発表者
1	2006/12/6	THE13TH	Through-Hole Interconnection	松下電工株式会社
	(プロシーディン	INTERNATIONAL	in Si Substrate for Wafer Level	鎌倉、城石、田浦、
	グ発行)	DISPLAY	Package	友井田、西條、
		WORKSHOPS		戸根、片岡

		(IDW'06)		
2	2006/9/13	The International	MEMS Wafer Level Packaging	松下電工株式会社
	(プロシーディン	Conference on Solid	by Using Surface Activated	竹川、馬場、奥戸、
	グ発行)	State Devices and	Bonding	鈴木
		Materials (SSDM)		
3	2005/2/3	溶接学会	低残留応力化に向けた表面活性	松下電工株式会社
	(論文投稿)	マイクロ接合研究委員会	化フリップチップ実装プロセスの開	佐名川、植田
		シンポジウム Mate2005	発	
4	2006/2/2	溶接学会	セラミック基板への表面活性化	松下電工株式会社
	(論文投稿)	マイクロ接合研究委員会	常温フリップチップ実装プロセ	植田、中筋、佐名川
		シンポジウム Mate2006	スの開発	

番号	発表日	発表先	題名	発表者
1	2003/11/12	第14回マイクロマシン	松下電工の MEMS ファンドリーサ	松下電工
	~2003/11/14	展	ービス	
			(MEMS ウエハレベルパッケージン	
			グ)	
2	2004/11/10	第15回マイクロマシン	松下電工の MEMS ファンドリーサ	松下電工
	~2004/11/12	展	ービス	
			(MEMS ウエハレベルパッケージン	
			グ)	
3	2005/11/9	第16回マイクロマシン	松下電工の MEMS ファンドリーサ	松下電工
	~2005/11/11	展	ービス	
			(MEMS ウエハレベルパッケージン	
			グ)	
4	2006/11/7	第17回マイクロマシン	松下電工の MEMS ファンドリーサ	松下電工
	~2006/11/9	展	ービス	
			(MEMS ウエハレベルパッケージン	
			グ)	
5	2004/3/17	国際ナノテクノロジー展	超小型 MEMS センサ製造技術の	松下電工
	~2004/3/19	2004	開発(超小型、低コストMEMSセ	
		nano-tech2004	ンサを実現するパッケージング技	
			術)	
6	2005/2/23	国際ナノテクノロジー展	超小型 MEMS センサ製造技術の	松下電工
	~2005/2/25	2005	開発(超小型、低コストMEMSセ	
		nano-tech2005	ンサを実現するパッケージング技	

			術)	
7	2006/2/21	国際ナノテクノロジー展	超小型 MEMS センサ製造技術の	松下電工
	~2006/2/23	2006	開発(超小型、低コストMEMSセ	
		nano-tech2006	ンサを実現するパッケージング技	
			術)	
8	2006/4/24	ドイツ国際見本市	松下電工の MEMS ファンドリーサ	松下電工
	~2006/4/28	ハノーバメッセ	ービス	
9	2006/9/15~	松下電工ホームページ	松下電工の MEMS ファンドリーサ	松下電工
			ービス	
			(MEMS ウエハレベルパッケージン	
			グ)	

1-4 MEMSデバイスの研究開発

1-4-1 スマートスキンの実現を目指す MEMS アレイとその信号接続方法の研究

番号	発表日	発表先	題名	発表者
1	2005/1/30~2/3	IEEE International	A MEMS array pneumatic	Yamato Fukuta,
		Conference on Micro	conveyor and its control based	Yves-Andre
		Electro Mechanical	on distributed system	Chapuis, Yoshio
		Systems (MEMS2005),		Mita, Hiroyuki
		p. 40, Miami, USA		Fujita
2	2005/3/30	6 th IEEE	Electrical Detection of	Benjamin
		Latin-American Test	Failures of MEMS Electrostatic	Caillard, Yoshio
		Workshop	Microactuators for Test	Mita, Y. Fukuta,
			Circuits	Yves-Andre
				Chapuis, Tadashi
				Shibata, Hiroyuki
				Fujita
3	2005/4/4~4/7	IEEE 18 th	Accelerated life time	Benjamin
		International	estimation of electrostatic	Caillard, Yoshio
		Conference on	microactuators	Mita, Yamato
		Microelectronics		Fukuta, Tadashi
		Test Structures		Shibata, Hiroyuki
				Fujita
4	2005/6/5~6/9	The 13th	THE 2D FEEDBACK CONVEYANCE	M. Ataka, B.
		International	WITH CILIARY ACTUATOR ARRAYS	Legrand, L.
		Conference on		Buchaillot, D.
		Solid-State Sensors,		Collard & H.
		Actuators and		Fujita
		Microsystem		
5	2007/1/2~1/25	IEEE International	The Stack-Integrated Sensor /	M. Ataka, M. Mita
	(口頭発表予定)	Conference on Micro	Actuator Array for the 2D	& H. Fujita
		Electro Mechanical	Feedback Conveyance	
		Systems (MEMS2007),		
		Kobe, Japan		

番号	発表日	発表先	題名	発表者
1	2006/2	IEEE Transactions on	A highly simple failure	Benjamin
		Semiconductor	detection method for	Caillard, Yoshio
		Manufacturing, Vol.	electrostatic	Mita, Yamato
		19, No. 1, pp. 35-42	microactuators: application	Fukuta, Tadashi
			to automatic testing and	Shibata,
			accelerated lifetime	Hiroyuki Fujita
			estimation	

プレス発表等

番号	発表日	発表先	題名	発表者
1	無し			

1-4-2 マイクロ走査型顕微鏡の研究開発

学会発表

番号	発表日	発表先	題名	発表者
1	August	IEEE/LEOS Optical	Integrated micro-displacement sensor	R. Sawada, E.
	21-24th, 2006	MEMS2006,	that can measure tilting or linear motion	Higurashi, S.
			for an external mirror	Sanada, D.
				Chino and I.
				Ishikawa

論文

番号	発表日	発表先	題名	発表者
1	投稿中	Sensor & Actuator	Integrated micro-displacement sensor that can	I. Ishikawa, R. Sawada, E.
			measure tilting or linear motion for an external	Higurashi, S. Sanada, and
			mirror	D. Chino

番号	発表日	発表先	題名	発表者
1	2006/2/21~2/23	nano tech 2006(東京ビッ	マイクロ走査型顕微鏡	NEDO
		グサイト)		
2	2006/5/25 ~5/27	福岡ナノテク展(北九州国	マイクロ走査型顕微鏡	福岡県新産業・技
		際展示場)		術振興課主催

3	2006/10/12	ビジネスリンク商売繁盛	集積化超小型変位センサ	三菱東京UFJ銀行
		(東京ビックサイト)	J	主催(九州大学知
				的財産部)

1-4-3 MEMS 技術を用いた小型多軸フォース・モーメントセンサの開発

子云光:	発表日	発表先	題名	発表者
国際 1	2006.11	(IEEE MEMS 2006) Nagoya,	Fabrication and Characterization of	Dzung Viet Dao and
		Japan, Nov.6-8, 2006	4-DOF Soft-Contact Tactile Sensor	Susumu Sugiyama
			and Application to Robot Fingers	
国際 2	2006.10.25	(IEEE Sensors 2006) The 5th	Development of 4-DOF Soft-Contace	Dzung Viet Dao and
		IEEE Conference on Sensors,	Tactile Sensor and Application to	Susumu Sugiyama
		Daegu, Korea, Oct.22-25, 2006	Gripping Operation of Robotics Fingers	
国際3	2006.10.25	(IEEE Sensors 2006) The 5th	Tactile Perception using Micro	Ikuo Fujii,Takahiro
		IEEE Conference on Sensors,	Force/Moment Sensor Embedded in	Inoue,Dzung Viet
		Daegu, Korea, Oct.22-25, 2006	Soft Fingertip	Dao,Susumu Sugiyama,
				and Shinichi Hirai
国際4	2006.06.27	(APCOT2006) Asia-Pacific	Development of 4-DOF Soft Fingertip	Dzung Viet Dao, Qiang
		Conference of Transducers	Sensor Utilizing Micro Force Moment	Wang, Yusuke Sei and
		and Micro-Nano Technology,	Sensing Chip	Susumu Sugiyama
		Singapore, Jun. 25-28, 2006,		
		IEEE		
国際 5	2006.07.12	(ISFA2006) Proceedings of	Development of a Soft Fingertip Sensor	Dzung Viet Dao, Qiang
		2006 Int'l Symposium on	Utilizing MEMS-based Multi-axis Force	Wang, Yusuke Sei and
		Flexible Automation, Osaka,	Sensor	Susumu Sugiyama
		Japan, July 10−12, 2006,		
		ISCIE/ASME-DSC		
国際 6	2004.11.09	(ICMT2004) Proceedings of the	A New Design of a 6-DOF MEMS-based	Y.Q.Nguyen, D.V.Dao,
		8th International Conference	Sensor for Measuring Hydrodynamic	J.C.Wells, M.Takahashi,
		on Mechatronics Technology,	Loads Acting on a Hemisphere	T.Toriyama and
		Nov. 8-12, Hanoi, Vietnam, Inst.		S.Sugiyama
		of Mechanics-Vietnamese		
		Academy of Sci. & Technology,		
		Vietnam National Univ.		
		Publisher		
国際 7	2004.07.07	Measurement of Loads Acting	(APCOT MNT 2004) Asia-Pacific Conf.	Anh Tuan Nguyen,
		on a Near-Wall Particle in	of Transducers and Micro-Nano	Dzung Viet Dao,
		Turbulent Water Flow by Using	Technology / (ICEE2004) Int'l	Toshiyuki Toriyama,
		a 6-Dof MEMS-Based Sensor	Conference on Electrical Engineering	John C. Wells and
			2004, July 4-8, 2004, Sapporo, Japan,	Susumu Sugiyama
			Conference Proceedings, Vol.3-12	

国際 8	2003.06.10	A MEMS-Based Microsensor	(Transducers'03)The 12th International	Dzung Viet Dao,
国際の	2000.00.10	to Measure All Six Components	Conference on Solid-State Sensors,	Toshiyuki Toriyama,
		of Force and Moment on a	Actuators and Microsystems, Boston,	John Wells and Susumu
		Near-Wall Particle in Turbulent	June 8–12, 2003, IEEE	Sugiyama
		Flow	June 8-12, 2003, IEEE	Sugiyama
国際 9	2003.05.00	Silicon Piezoresistive	Proceeding of 'Hanoi University of	Dzung Viet Dao,
		Six-Degree of Freedom	Technology and Ritsumeikan University	Toshiyuki Toriyama,
		Force-Moment Micro Sensor	Joint Symposium on Snsory-Motor	John Wells and Susumu
			Coordination in Robotic Manipulation',	Sugiyama
			 March 2−3, 2004, Japan,	
国内 1	2006.10.06	Fabrication and	23rd Sensor Symposium on Sensors,	Dzung Viet Dao, Yuki
		Characterization of 3-DOF	Micromachine and Applied Systems,	Takashima, Qiang Wang
		Soft-Contact Tactile Sensor	Oct.5–6, 2006, Takamatsu, Kagawa,	and Susumu Sugiyama
		Utilizing 3-DOF Micro Force	Japan	
		Moment Sensor		
国内 2	2005.10.20	Design of Micro Force-Moment	Proceedings of The 22nd Sensor	Dzung Viet Dao, Yuki
		Sensors and Application to	Symposium on Sensors, Micromachines,	Takashima, Qiang Wang
		Soft Fingertip Sensor	and Applied Systems, Oct.20-21, 2005,	and Susumu Sugiyama
			Tokyo, IEEJ Sensors and Micromachines	
			Society	
国内 3	2005	シリコンピエゾ抵抗型カモーメ	Technical Digest of the 22th Sensor	清優介、Dzung Viet
		ントセンサの構造による特性比	Symposium 2005, IEEJ, Tokyo	Dao、才木常正、鳥山
		較と指先センサへの応用		寿之、杉山進
国内 4	2003	SOI-MICSのデザインルー	電気学会研究会資料、マイクロマシン・	Dzung Viet Dao,鳥山寿
		ムに基づく3軸フォースセンサ	センサシステム研究会、MMS-03-1、	之、杉山進、山田行
		の設計	 11、電気学会	利、木下好之、原田宗
				生
国内 5	2003.08.21	Measurement of Loads Acting	第8回知能メカトロニクスワークショップ	A.T. Nguyen, D.V. Dao,
		on a Near-Wall Particle in	講演論文集、滋賀、精密工学会	T. Toriyama, J.C. Wells
		Turbulent Water Flow by Using		and S. Sugiyama
		a 6-DOF MEMS-Based Sensor		
国内 6	2003.07.23	Measurement of Loads Acting	Proceedings of the 20th Sensor	A.T. Nguyen, D.V. Dao,
		on a Near-Wall Particle in	Symposium on Sensors, Micromachines,	V.T. Dau, M. Takahashi,
		Turbulent Water Flow by Using	and Applied Systems, July 23-24, 2003,	T. Toriyama, J.C. Wells
		a 6-DOF MEMS-Based Sensor	Tokyo, The Institute of Electrical	and S. Sugiyama
			Engineers of Japan	
国内 7	2003.07.23	Design of a Three Axis Force	Proceedings of the 20th Sensor	Y. Yamada, Y.
		Sensor Based on SOI-MICS	Symposium on Sensors, Micromachines,	Kinoshita, D.V. Dzung,

	and Applied Systems, July 23-24, 2003,	T. Toriyama, S.
	Tokyo, The Institute of Electrical	Sugiyama and M.
	Engineers of Japan	Harada

番号	発表日	発表先	題名	発表者
1	2003.05.00	Sensors and Materials, MYU,	Silicon Piezoresistive Six-Degree of	Dzung Viet Dao,
		Tokyo, Vol. 15, No. 3	Freedom Force-Moment Micro Sensor	Toshiyuki Toriyama,
				John Wells and Susumu
				Sugiyama

番号	発表日	発表先	題名	発表者
1	2006.08.18	日本経済新聞	指先に載る触覚センサー	立命館大学 杉山
			立命館大が小型化 ロボットハンド	進
			用に	