学会等発表実績

委託業務題目「量子干渉効果による小型時計用発振器の高安定化の基礎研究」 機関名 一般財団法人マイクロマシンセンター

		T			
種別	題目	発表者名	学会名、学会誌名 (巻号頁)	発表年月 日	備考
プレス発表	量子干渉効果による	武田宗久. 池	一般財団法人マイク	2020/4/1	
	小型時計用発振器の		ロマシンセンターの		
	高安定化の基礎研究	-	ホームページ		
	100至成初				
展示・講演	マイクロマシンセン	武田宗久	センシング技術応用	2020/9/4	
	ターで進めている国		研究会第212回研究		
	プロに関する紹介		例会		
展示・講演	量子干渉効果による	池上健、武田	MEMSセンシング&	2020/12/9-	
	小型時計用発振器の	宗久	ネットワークシステ	11	
	高安定化の基礎研究		ム展2021展示		
展示・講演	量子干渉効果による	池上健	MEMSセンシング&	2020/12/10	
	小型時計用発信器の		ネットワークシステ		
	高安定化の基礎研究		ム展2021併催研究開		
			発プロジェクト成果		
			報告会		
その他	マイクロマシンセン	武田宗久	電波新聞新年特集号	2021/1/8	
	ターの取り組み「自				
	立型時刻管理デバイ				
	ス」など				
学会発表	小型原子時計のため	高見澤昭文、	応用物理学会春季学	2021/3/16-	
	のセシウムD1線の	柳町真也	術講演会	19	
	外部共振器半導体				
	レーザの開発				