環境センシングデバイスの開発

本多祐仁

田中 純一 オムロン(株)

● CO₂ ガスセンサ,赤外線アレーセンサ, BEMS・HEMS

1. はじめに

オフィスビル,製造現場などの省電力化を進めていくた めには、人の位置、および人数を把握し、不在時、あるい は不在箇所の空調・照明のエネルギーを落とすことが有効 な手段である。また、ビル衛生管理法において二酸化炭素 (CO₂) 濃度を1000 ppm 以下にする基準が定められてお り、換気が必要となる。また、業務の効率面でもCO₂ 濃 度が高くならないように換気制御を行うことが望ましい。 一方、過剰換気はエネルギーのロスとなるため、CO₂ 濃度 をモニタして必要最小限の換気を保つことが省エネルギー 化にとって重要となる。

オフィスなどでの人の位置や換気の必要性を検出するセ ンサとしては、CO₂センサおよび赤外線センサがあげられ る。CO₂センサについては、現状は、CO₂が赤外線の特定 波長を吸収する原理を用いた NDIR 方式(非分散型赤外 分光法)と、CO₂ガスと固体電解質(ファインセラミック ス)の化学反応を利用した電池型の2種類がある。しかし ながら、NDIR 方式は、赤外線を吸収するための光路長お よび光源が必要であり、電池型は電解質であるファインセ ラミックスの室温での電導度が低く、ヒータによる加温 (約 400℃)が必要であるため、①消費電力が大きい ② サイズが大きい ③光源や電池の寿命があるなど、両者と もに課題がある。そこで、本稿ではこれらの課題を解決す る新たなセンシング方法について紹介する。

赤外線センサの検知方式として、代表的には、焦電型、 ボロメータ型、サーモパイル型が存在する⁽¹⁾。この中で、 低価格化には通常の IC の作製に利用される CMOS プロセ スを用いることができるサーモパイル型が有利である。ま た、赤外線アレーセンサの低価格化のためには、素子の小 型化も有効である。しかし、小型化により感度が低下する ため、高感度化技術が必要となってくる。サーモパイル型 赤外線センサの感度向上の方策として、サーモパイル数を 増加させることや吸収膜を大きくすることによって開口率 を上げる方法がとられているが、双方とも小型化には背反 する方法である。そこで、小型で低価格な赤外線アレーセ ンサの実現を目標に、従来の CMOS プロセスで作製可能 なサーモパイル型赤外線アレーセンサを用い,素子の小型 化による感度の低下を補うためにウェハレベルでの真空封 止を用いた赤外線アレーセンサについて紹介する。

本稿では現在 NEDO 研究⁽²⁾として複数企業と共に検討 している中小オフィス向けの省エネ情報システム(以下, グリーンセンサネットワークプロジェクト:GSN)の中の CO₂ センサおよび赤外線アレーセンサの取り組みについて 紹介する。

2. イオン液体を用いた CO₂ センサ

2.1 CO2 センサの構成

GSN では、イオン液体の CO₂ 吸着を利用して、従来の CO₂ センサと比べ、低消費電力(従来比より 1 / 100)・小 型(センササイズ 10 × 10 mm)・長寿命・低コストな CO₂ センサの開発に取り組んだ^{(3)~(6)}。

図1に我々の開発中の CO_2 センサの概略図を示す。電 極基板はMicro Electro Mechanical Systems (MEMS) 技術を用いてガラス基板またはSi基板上に電極部を形成 した。中央部にイオン液体を実装し、液漏れ防止のため、 ガス透過膜でカバーした。

2.2 イオン液体を用いた CO2 センサの開発内容

 CO_2 濃度を制御できるチャンバーを作製した。図2に 実験装置の系統図を示す。ガス濃度はマスフローメータで 制御した。インピーダンス値の測定は電気化学計測システ ム (イギリス Solartron, 12608)を用いた。セルは、図3 に示す電気化学セル (東陽テクニカ, SP-C1R-C)を使用 し、イオン液体をマイクロピペットで2ml 滴下して測定 を 行 っ た。 イ オ ン 液 体 は ethyl-methyl-imidazolium (EMIMBF₄), ethyl-methyl-imidazolium (EMIMTFSI)

図1 開発中の CO₂ センサの概略図

図2 実験装置の系統図

図3 電気化学セル

などを用いた。

図4に今回用いたイオン液体の分子式を示す。

測定方法は、チャンバ内に電気化学セルをセットし、真空(10 kPa 程度)にしてから、N₂、O₂を80:20の比率で、投入した。気圧は1 atm に保持した。その後、所定量の CO₂を投入した。測定は CO₂ 濃度を0~4000 ppm の範囲で、行った。

2.3 イオン液体を用いた CO₂ センサの特長

図5にEMIMTFSIのCO2濃度600ppmで保持した状態でのインピーダンス特性を示す。周波数0.1 Hzで計測を行った。インピーダンス値は測定から10分程度,値が変動するが,それ以降,インピーダンス値は安定した。よって測定方法はチャンバ内に所定のCO2濃度を投入してから10分後に,測定したインピーダンス値を採用した。

図 6 に EMIMTFSI の CO_2 濃度 0 ~ 4 000 ppm でのイ ンピーダンス特性を示す。図 6 より、 CO_2 濃度が増加する

図 5 CO₂ 600 ppm での EMIMTFSI のインピーダンス特性

につれ、インピーダンス値が低下する結果を得た。図7 に CO_2 濃度とインピーダンス値の相関図を示す。測定周 波数 0.01 Hz にて、 CO_2 濃度とインピーダンス値の関係が 1 次線形の関係を得た。図7より開発中の CO_2 濃度センサ の分解能は、100 ppm であり既存の NDIR および固体電 解質型 CO_2 センサの分解能と同等以上の分解能を有する ことが分かった。

2 0 0 0

図7 CO2濃度とインピーダンス値の相関図

CO₂ concentration [ppm]

3 0 0 0

4 0 0 0

5 000

0.E+00

1 000

開発中の CO2 濃度センサを用いれば、小型かつ低消費

電力なセンサであるため,上記のアプリケーションにおい ても対応が可能と考える。また商品化を考える上で,CO₂ センサのセンシング部分であるイオン液体の長期信頼性の 確保および製造プロセスの簡略化のために,イオン液体の ゲル化を検討している。

3. サーモパイル赤外線アレーセンサ

3.1 開発コンセプト

(1) 開発目標

小型・安価な赤外線アレーセンサを開発することで,オ フィスやクリーンルーム内の空調設備や照明機器の省エネ ルギー化に貢献することが最終目標である。そのために, 低コスト・小型化に最適な MEMS 技術を駆使することに より,環境温度や人の存在検知に適した赤外線アレーセン サチップを開発することを目標とする。

(2) 赤外線アレーセンサの仕様

赤外線アレーセンサの仕様を,表1に示す。画素数・ 画素サイズは,高さ3mの天井の位置から3.6m角の領 域の人をセンシングした際に,1画素の視野範囲と人が同 程度の大きさとなるように設定した。また,一画素の応答 速度は,フレームレート10 fps で人の存在検知ができる ように設定した。

(3)赤外線アレーセンサの特徴

開発する赤外線アレーセンサの特徴は,ウェハレベル真 空封止による,センサ素子の小型・高感度化である。詳細 を以下に記載する。

ー般的なサーモパイル型赤外線アレーセンサの断面模式 図を図8に示す。メンブレン上にP型とN型のポリシリ

表 1	GSN	での赤外線ア	レーセン	ンサの仕様
-----	-----	--------	------	-------

目標項目	目標値
チップサイズ	7 mm 角
画素数	16 × 16
画素サイズ	250 µm 角
応答速度	33 msec

コンでサーモパイルが形成されている。赤外線吸収膜で吸 収された赤外線が熱に変換されゼーベック効果によって、 電圧が出力される。また、サーモパイル型赤外線センサの 出力*S*(V)は、式(1)で表される。

ここで, *n* はサーモパイル対数, *a* はゼーベック係数 (V / K), *η* は赤外線吸収率, *R* は熱抵抗 (K / W), *A* は 赤外線吸収膜面積 (m²), *P* は入射光密度 (W / m²), *ΔT* (K) は温接点と冷接点の温度差である。また熱抵抗*R* は MEMS 構造体の熱抵抗と周囲の気体の熱抵抗の合成抵抗 である。

センサ素子の小型化と高感度化を両立するために, nの サーモパイル対数やAの赤外線吸収膜面積を増やすこと には限界がある.また, aのゼーベック係数とnの赤外線 吸収率は使用する材質に依存する。したがって, R:熱抵 抗を大きくすることが感度向上に対する対策となる。この Rを大きくする有効な方策がセンサ周囲の圧力を下げるこ とである。

つまり,ウェハレベルで真空封止を行うことで,チップ サイズを拡大することなく,センサ素子を高感度化でき る。

3.2 試作結果

実際に試作したセンサチップの SEM 像を図9(a) に, ウェハレベル真空封止後のチップ断面写真を図9(b) に 示す。センサウェハとキャップウェハは, AuSn 共晶接合 を用いて真空封止を行っている。

チョッパを用いて、センサ素子に間欠的に赤外線を照射 し、一画素のアナログ出力をオシロスコープで測定したと ころ一画素の応答速度は18 msec 以下であった。

センサ素子の感度の評価系を、図10に示す。センサ素

図 9 (a) センサ側チップの SEM 像 (真空封止前)

図9(b) センサチップ断面写真

図10 センサ感度の評価系

表2 真空による感度変化の測定結果

真空封止前のセンサ 感度(bit/℃)	真空封止後のセンサ 感度(bit/℃)	真空効果
0.87	1.85	2.0 倍

子に対して,周囲温度より25℃高い温度の黒体炉から出 射される赤外線を照射し,センサ素子の出力から感度を算 出する。真空封止前の感度と,真空封止後の感度を比較す ることで,真空封止によるセンサ感度向上の効果(以下, 真空効果という)を測定した。表2に,真空効果を測定 した結果を示す。真空封止により,センサの感度が約2.0 倍向上したことを確認できた。

4. おわりに

イオン液体を用いた小型かつ低消費電力の CO₂ センサ の開発および小型高感度なサーモパイル型赤外線アレーセ ンサについて概要を紹介した。

文 献

- (1) M. Ohira et. al., Proc. MEMS 2011, pp.708-711 (2011)
- (2)技術研究組合 NMEMS 技術研究機構 HP: http://www.nmems.or.jp/ index.html
- (3) M. Honda et al, Proc. SENSORS 2012, pp.745-748 (2012)
- (4) 本多祐仁 予稿集 第3回イオン液体討論会, p.132 (2012)
- (5) K. Ishizu et. al., Proc. MEMS 2012, pp.784-787 (2012)
- (6) N. Kiga et. al., Proc. MEMS 2012, pp.796-799 (2012)

CO₂ センサの開発では,従来の CO₂ センサの課題であ った消費電力・サイズ・寿命といった課題をクリアする必 要がある。この打ち手として GSN ではイオン液体のイン ピーダンスが CO₂ 濃度に依存することを利用した CO₂ 濃 度測定法を提案し効果を確認してきた。今後は CO₂ セン サモジュール全体のさらなる小型化による低消費電力化を 行うと同時に,自立型センサ端末として自立電源,無線デ バイスの搭載に取り組んでいく。

また赤外線センサの開発では,環境温度や人の存在検知 に適した赤外線アレーセンサチップを開発することを目標 に,MEMS技術とウェハレベル真空封止を利用し,サー モパイル赤外線アレーセンサチップの試作を実施した。真 空封止により,2.0倍の感度向上の効果を確認できた。

実際にGSNの中で実証実験を進めることで、センサ仕様の見直しを進め、省エネ効果をさらに高めていく。

特に東日本大震災以降,電力の不足から起因される節電 や省エネルギー化への取り組みが今後も継続的に必要不可 欠であり,今後,本プロジェクトに参画している他の企業 との連携を深めながら,小型・低消費電力なセンサネット ワークの実現を目指していく。

〈謝辞〉本稿に記載の成果の一部は、独立行政法人新エネ ルギー・産業技術総合開発機構(NEDO)の共同研究業務 の結果から得られたものです。

田中 純一

ほんだ・まさひと

2001 年新潟大学大学院自然科学研究科修了。2001 年ニチコン(株) 入社。2004 年オムロン(株) 入社。現在オムロン(株) 技術・知財 本部 PMEMS プロジェクト。2011 年よりグリーンセンサ・ネット ワークシステム技術開発プロジェクトに従事。

たなか・じゅんいち (正員)

2004 年早稲田大学大学院修了。2004 年オムロン(株) 入社。現在 オムロン(株) 技術・知財本部 PMEMS プロジェクト。2011 年よ りグリーンセンサ・ネットワークシステム技術開発プロジェクトに 従事。