平成16年度
分野別動向調査報告書

（国内外技術動向調査委員会）

平成17年3月

財団法人 マイクロマシンセンター
序

マイクロマシン・M E M S技術は、工業技術や医療技術をはじめとする広範な分野において革新的な基盤技術となるとして注目され、国内外の機械工学、電子工学、医用工学などの多様な分野でその研究開発が急速に拡大しております。

マイクロマシンという言葉が生まれ、マイクロマシン・M E M S技術の本格的な研究開発がスタートして、はや15年が経過しました。その間、経済産業省の「マイクロマシン技術の研究開発」プロジェクトも多くの成果を上げて終了し、現在では多くの研究成果が国際会議、シンポジウム、学会、研究論文および新聞・雑誌などを通じて報告されるようになりました。しかし、マイクロマシン・M E M S技術の応用可能性の大きさから考えると、それらはまだ一部分であり、今後もより幅広い研究開発が必要であると考えられます。今後の研究開発を円滑かつ効率的に推進させるためには、国内外にわたる現状の研究開発状況を調査・分析し、マイクロマシン・M E M S技術関係者にフィードバックすることがきわめて重要であります。

このような状況と認識に立って、当マイクロマシンセンターでは従来からマイクロマシン・M E M S技術に関する国内外の研究開発動向を調査する事業を継続的に行ってまいりました。昨年度より事業名を国内外技術動向調査事業と改め、調査研究委員会の下に国内外技術動向調査委員会を設けて本事業を行いました。

本報告書は、この調査研究事業の平成16年度の成果をとりまとめたものです。各方面において広くご利用頂ければ幸いです。

平成17年3月

財団法人マイクロマシンセンター
専務理事　青柳　桂一
目次

序

第1章 緒言

1-1. はじめに
1-2. 委員会構成
1-3. 調査方法

第2章 平成16年度上期分野別動向調査結果

2-1. Fundamentals
2-1-1. Fabrication Technologies (Silicon)
2-1-2. Fabrication Technologies (Non-Silicon)
2-1-3. Packaging Technologies
2-1-4. Actuators (Electrostatic, Piezoelectric, etc.)
2-1-5. Actuators (Electromagnetic, Magnetic)
2-1-6. Design and Modeling
2-1-7. Material

2-2. Applied Devices/Systems
2-2-1. Physical (Sensors)
2-2-2. Fluidic
2-2-3. Medical
2-2-4. Biological
2-2-5. Optical (Optical switch, etc.)
2-2-6. Chemical
2-2-7. Robotics System and Control
2-2-8. RF-MEMS
2-2-9. Power-MEMS
2-2-10. Others (SPM, etc.)
第3章 平成16年度分野別動向調査結果
（MEMS2005発表分類調査、分野別動向調査）

3-1. Fundamentals
 3-1-1. Fabrication Technologies (Silicon) .. 78
 3-1-2. Fabrication Technologies (Non-Silicon) .. 80
 3-1-3. Packaging Technologies ... 84
 3-1-4. Actuators (Electrostatic, Piezoelectric, etc.) 86
 3-1-5. Actuators (Electromagnetic, Magnetic) ... 90
 3-1-6. Design and Modeling ... 92
 3-1-7. Material ... 94

3-2. Applied Devices/Systems
 3-2-1. Physical (Sensors) .. 96
 3-2-2. Fluidic ... 100
 3-2-3. Medical ... 102
 3-2-4. Biological .. 106
 3-2-5. Optical (Optical switch, etc.) ... 110
 3-2-6. Chemical ... 114
 3-2-7. Robotics System and Control ... 116
 3-2-8. RF-MEMS ... 118
 3-2-9. Power-MEMS .. 122
 3-2-10. Others (SPM, etc.) ... 124

3-3. Others
 3-3-1. Others ... 128