平成 29 年度
産業動向調査報告書
Connected Industries に向けた
MEMS の挑戦と課題

平成 30 年 3 月

一般財団法人 マイクロマシンセンター
産業動向調査委員会
目次

序
序...i
緒言 ... 1
はじめに... 1
委員会構成 .. 2
調査方法 .. 3
第1章 MEMS産業の動向 ... 4
 1.1 MEMS産業動向 ... 4
 1.2 MEMS産業の市場予測と今後の期待 .. 8
第2章 Connected Industriesに向けたセンサ＆ネットワークシステムの取組み事例
 2.1 MMC/NMEMSで取り組んでいる国家プロジェクトの取組み事例...................... 12
 2.1.1 道路インフラ状態モニタリング用センサシステムの研究開発プロジェクト（RIMS）の事例 .. 12
 2.1.2 超高効率データ抽出機能を有する学習型スマートセンシングシステムの研究開発プロジェクト（LbSS）の事例 ... 17
 2.1.3 空間移動時のAI融合高精度物体認識システムの研究開発プロジェクト（AIRs）の事例 ... 22
 2.1.4 スマートセンシング・インタフェース標準化開発（SSI）の事例 25
 2.2 国内企業のConnected Industriesの取組み .. 30
 2.2.1 オムロン（株）の取組み ... 30
 2.2.2 オリンパス（株）の取り組み（医療分野での取り組みを含め） 36
 2.2.3 （株）東芝グループの取り組み ... 42
 2.2.4 （株）日立製作所の取り組み ... 51
 2.2.5 三菱電機（株）の取り組み ... 57
 2.2.6 人がつながるConnected Industryの事例 ... 62
 2.3 海外の取り組み .. 71
 2.3.1 SIEMENS（ドイツ） ... 71
 2.3.2 SAP（ドイツ） .. 73
 2.3.3 DAIMLER（ドイツ） .. 75
第3章 Connected Industries に向けたMEMSの挑戦と課題

3.1 Connected Industriesとは ... 95
3.2 歴史からみる、これからの市場変化... 95
3.3 新しいMEMS技術が新製品を創出 .. 96
3.4 どのようなMEMSがConnected Industriesを実現していくのか？ 100
 3.4.1 自動走行 ... 101
 3.4.2 スマートライフ ... 102
3.5 MEMS&センサどのように進化すると、Connected Industriesを加速できるか？ 104
 3.5.1 安価・高効率な自立電源 ... 104
 3.5.2 超低消費電力、待機電力がほぼゼロに近いセンサ 105
 3.5.3 ポリマー/ペーパーセンサによる安価センサ 107
 3.5.4 超高精度時刻同期システム .. 108
 3.5.5 センサフュージョン+AIチップによる高度センシング 109
 3.5.6 スマートフォンの進化による更なるConnected Industriesの加速 110
 3.5.7 センサインターフェースの標準化 ... 110
 3.5.8 その他 .. 111
3.6 まとめ ... 111
緒言

はじめに

我が国の科学技術化学の振興に関する「第5期科学総合技術基本計画において、狩猟社会（Society1.0）、農耕社会（Society2.0）、工業社会（Society3.0）、情報社会（Society4.0）に続く、「Society5.0（超スマート社会）」の実現を目指しています。

Society5.0とは、サイバー空間（仮想空間）とフィジカル空間（現実空間）を高度に融合させたシステムによって、経済発展と社会課題の解決を両立する、人間中心の社会（超スマート社会）を目指しています。

「超スマート社会」とは、「必要なもの・サービスを、必要な人に、必要な時に、必要なだけ提供し、社会の様々なニーズにきめ細かく対応でき、あらゆる人が質の高いサービスを受けられ、年齢、性別、地域、言語といった様々な違いを乗り越え、生き生きと快適に暮らす社会」と定義されています。

この「Society5.0」を実現するために、産業側が目指す姿として「Connected Industries」が2017年3月に経済産業省より発表されました。これはドイツの「Industrie 4.0」の日本版というべきもので、「様々な『つながり』によって、新たな付加価値が創出される産業社会」と定義し、従来、ともすると独立あるいは対立関係にあったモノとモノ（IoT）、人と機械・システム、人と技術、異なる産業を有する企業と企業、世代を超えた人と人、製造者と消費者など、様々なものがつながることで、新たな付加価値を創出し、社会課題を解決していくような産業のあり方を目指すものです。

Society5.0では、フィジカル空間のセンサからの膨大な情報がサイバー空間に集積されます。そして、このビッグデータを人工知能（AI）が解析し、その解析結果がフィジカル空間の人間に様々な形でフィードバックされます。つまり、これまでと比較して、膨大で良質なセンサ情報が今後ますます要求されています。

本産業動向調査委員会では「MEMS & センサ が Connected Industries をどのように加速していくか」をテーマに、今後のMEMS & センサについて議論をしましたので、是非、ご一読ください。

平成30年3月

産業動向調査委員会
委員長 下山勲