平成26年度エネルギー・環境新技術先導プログラム 採択テーマー覧

プログラム名	申請テーマ	委託予定先
(1)地熱発電次世代技 術の開発	島弧日本のテラワットエネルギー創成先導研究	独立行政法人産業技術総合研究所 富士電機株式会社 地熱エンジニアリング株式会社 国立大学法人東北大学
	地熱開発コストの大幅な削減を目指す高効率電気 パルス掘削システムの開発	独立行政法人産業技術総合研究所 国立大学法人東京大学 株式会社I-Pulse Japan
	地熱発電量を10倍化する酸性熱水利用および還元 井減衰防止技術の開発	九電産業株式会社 国立大学法人九州大学
	高温岩体発電に向けた超耐食タービンのためのマ ルチビームレーザ表面改質の研究	富士電機株式会社 国立大学法人大阪大学
(2)CO2フリー水素研究 開発	量子ダイナミクス理論に基づく革新的省エネルギー 水素社会実現の研究開発	川崎重工業株式会社 国立大学法人大阪大学 国立大学法人東京大学
	Nb窒化物系光触媒材料を用いた高効率太陽光水素 生成デバイスの研究開発	パナソニック株式会社 国立大学法人京都大学
	省エネセラミックコンプレッサ技術開発	独立行政法人産業技術総合研究所 株式会社ノリタケカンパニーリミテド 一般社団法人日本ファインセラミックス協会
	ナノカーボンハイブリッドを素材とした低コスト超高耐 久性次世代燃料電池の実現	国立大学法人九州大学 株式会社トクヤマ 株式会社ADEKA ナノフロンティアテクノロジー株式会社 松田産業株式会社
(3)CO2低コスト回収技 術開発	超高気体透過分離薄膜を用いたエネルギー起源 CO2の抜本的削減	公立大学法人首都大学東京 日本バイリーン株式会社
	高機能CO2選択透過膜を用いた低コスト省エネルギー型CO2分離・回収技術の開発	学校法人早稲田大学 国立大学法人広島大学 国立大学法人神戸大学 株式会社ルネッサンス・エナジー・リサーチ
(4)メモリ・ストレージ技 術の開発	新材料/新構造メモリデバイス基盤技術の研究開発	株式会社東芝 独立行政法人産業技術総合研究所
	データセンタの省電力化を実現する大容量・高速光 アーカイブシステムの研究開発	学校法人東京理科大学 特定非営利活動法人ナノフォトニクス工学推進機構 三菱化学株式会社 大日本印刷株式会社
(5)コンピューティング・ネットワーク技術の開発	IoT時代のCPSに必要な極低消費電力データセント リック・コンピューティング技術	学校法人中央大学 株式会社東芝 株式会社Preferred Networks
	ULPセンサモジュールの研究開発	株式会社東芝 公立大学法人兵庫県立大学 学校法人立命館 大日本印刷株式会社 独立行政法人産業技術総合研究所 国立大学法人神戸大学 国立大学法人東京工業大学 国立大学法人豊橋技術科学大学 国立大学法人東京大学
	センサモジュールの研究開発	テセラ・テクノロジー株式会社 国立大学法人東京大学 国立大学法人弘前大学 国立大学法人東北大学 アルプス電気株式会社 東京応化工業株式会社
	トリリオンセンサ社会を支える高効率MEMS振動発電デバイスの研究	技術研究組合NMEMS技術研究機構
	トリリオンノード(1兆個の端末ノード)の実現に向けての先導研究〜Cyber-Physical Systemを実現する超低消費電力・小型化技術に向けて〜	株式会社半導体理工学研究センター 国立大学法人東京大学

プログラム名	申請テーマ	委託予定先
	pn制御有機半導体単結晶太陽電池の開発	大学共同利用機関法人自然科学研究機構分子科学研究所 日本化薬株式会社 国立大学法人豊橋技術科学大学 公立大学法人大阪府立大学
	低炭素社会構築に向けたオフグリッドエネルギー ハーベストデバイスの開発	国立大学法人東京大学 ビフレステック株式会社 株式会社リコー 有機系太陽電池技術研究組合 公益財団法人神奈川科学技術アカデミー
	生物・有機合成ハイブリッド微生物による100%グリー ンジェット燃料生産技術の開発	公益財団法人地球環境産業技術研究機構
	再生可能エネルギー大量導入時代の系統安定化対 応先進ガスタービン発電設備の研究開発	一般財団法人電力中央研究所 独立行政法人産業技術総合研究所 三菱重工業株式会社 三菱日立パワーシステムズ株式会社 株式会社 IHI 川崎重工業株式会社 株式会社東芝
	革新的な高熱効率を有する自発予圧縮機構付き回 転デトネーションエンジンの研究開発	国立大学法人名古屋大学 学校法人慶應義塾 独立行政法人宇宙航空研究開発機構 株式会社IHIエアロスペースエンジニアリング 株式会社ネッツ
	吸熱的低温改質反応による革新的中低温排熱利用 技術の開発	国立大学法人東北大学 日揮株式会社 日揮触媒化成株式会社
	未利用廃熱回収を可能とする温度差を必要としない 革新的発電材料の研究開発	国立大学法人九州大学 ボッシュ株式会社 高周波熱錬株式会社
	超高温領域未利用エネルギー貯蔵技術の研究開発	株式会社四国総合研究所 学校法人玉川学園玉川大学
	フェムトリアクター化学プロセスの研究開発	独立行政法人産業技術総合研究所 日華化学株式会社 アピックヤマダ株式会社
	革新的機能性絶縁材料の先導研究	学校法人早稲田大学 国立大学法人名古屋大学 国立大学法人九州工業大学 国立大学法人豊橋技術科学大学 ナガセケムテックス株式会社 富士電機株式会社 一般財団法人電力中央研究所
	ナノディフェクト・マネジメントの基盤技術の研究開発	株式会社東芝
	高品質/高均質薄膜を実現する非真空成膜プロセス の研究開発	国立大学法人京都大学 公立大学法人高知工科大学 国立大学法人東京大学 株式会社FLOSFIA
	究極の省エネを実現する「完全自動化」自動車に不可欠な革新認識システムの研究開発	一般財団法人マイクロマシンセンター 株式会社デンソー 国立大学法人東京大学
	制御高度化により自動車等を省エネルギー化する低 レイテンシコンピューティングの研究	日本電気株式会社 国立大学法人東京大学
	可変バリア機能の発現に基づく革新的エネルギー制 御材料基盤技術開発	独立行政法人産業技術総合研究所 国立大学法人東北大学 クニミネ工業株式会社 コニカミノルタ株式会社 株式会社東洋高圧 富士フイルム株式会社 ユニチカ株式会社 日邦産業株式会社
	封止が不要な酸素・水分に強い有機EL材料の研究 開発	国立大学法人九州大学 保土谷化学工業株式会社 株式会社コムラテック 株式会社デンソー
	超省電力発光デバイスの開発	国立大学法人東北大学 DOWAホールディングス株式会社
	無冷却高圧タービン動翼を実現する最先端超高温 材料の研究開発	株式会社IHI 国立大学法人東北大学
	エネルギー効率の飛躍的向上のための高性能超高 純度鉄基耐熱合金等の研究開発	国立大学法人東北大学 東邦亜鉛亜鉛株式会社
	鉄鋼部品の設計・製造・利用を革新する高硬度-高 強度-高靭性過共析鋼の研究開発	国立大学法人大阪大学 株式会社小松製作所 山陽特殊製鋼株式会社