平成23~26年度成果報告書

社会課題対応センサーシステム開発プロジェクト

平成27年3月

独立行政法人新エネルギー・産業技術総合開発機構 (委託先)技術研究組合NMEMS技術研究機構

まえがき

近年、環境計測、農業、エネルギー、医療等の分野でユビキタスセンサネットワークシ ステムが確実に導入され始めている一方で、予期されたほどの普及は見られていない。社 会にユビキタスセンサネットワークが普及しない理由として、以下が指摘されている。

・センサの大きさ、設置面積等による設置箇所や設置個数の制約が大きい。

・電源や通信を有線で配線すると、設置工事で大きな負担が必要となる。

・電池を内蔵して無線にする場合、現状のセンサや送信技術では電力消費が多く電池交換等のメンテナンスが必要である。

したがって、センサネットワークを普及させるためには、センサノード(端末)の設置面 積を例えば絆創膏程度のサイズまで小さくし、その端末が無線通信機能を有し、低消費電 力で、電池交換が不要もしくは、その交換頻度が圧倒的に少ないこと、などの条件が必要 となる。

ところで、日本企業は電子部品で約4割の世界シェアを持つといわれているが、センサ の種類別にみると、欧米メーカに大半を占められているものもある。また、汎用品ではア ジア勢もシェアを伸ばしており、世界で激しい技術開発競争が行われている。このような 状況において、省エネ効果に寄与するグリーン MEMS センサ機能、無線通信機能、自立電 源機能及び超低消費電力機能等を付与した革新的センサの開発は、主要各国と比べても技 術的優位性を保ちうる先駆的な取り組みであり、ユーザを含めそれぞれの得意分野を有す る企業の英知を用いて、いち早く成果を創出することで、センサ及びセンサネットワーク 産業における我が国の国際競争力向上が大いに期待される。

本プロジェクト (グリーンセンサ・ネットワークシステム技術開発プロジェクト(略 称:GSN プロジェクト))は、センサネットワークに使用されるセンサデバイスの共通的な 課題である、無線通信機能、自立電源機能及び超低消費電力機能の搭載を実現する革新的 MEMS センサ(電流・磁界センサ、塵埃量センサ、CO2濃度センサ、VOC 濃度センサ、 赤外線アレーセンサ)の開発を行い、これらのセンサを用いたネットワークシステムを店 舗、オフィス及び製造現場等において構築し、省エネ効果の実証実験を行った。本報告書 においてその成果を報告する。

2

目次

1. 研究開発の成果	果と達成状況	9
1.1 研究開発の	成果	9
(1)要約(和文)		9
(2)要約(英文)		0
1.2 本文		2
① グリーンMI	EMSセンサの開発1	2
①-(1) 電流	・磁界センサの開発【横河電機(株)】1	2
①−(1)−1 4	研究開発の背景と目標1	2
①-(1)-2 1	電流計測技術の開発1	3
①−(1)−3	電流・磁界センサ端末の試作と実証実験2	28
(1)−(1)−4 ≥	まとめ	2
(1)−(1)−5 ₹	参考文献	2
①-(2) 塵埃世	量センサの開発【セイコーインスツル(株)、 (再委託先:東京大学)】. 3	3
①-(2)-1 ₩	研究開発の背景と目標3	3
①-(2)-2	トリガー部の開発3	6
(1)−(2)−3 <u>β</u>	塵埃検出部の開発【再委託先:東京大学】4	3
①−(2)−4	トリガー部と塵埃検出部の連動 4	7
(1)−(2)−5 #	情密部品工場での実証実験4	9
(1)−(2)−6 3	まとめ5	54
 (1)−(2)−7 	参考文献5	5
①-(3) CO ₂ 濃	と 度センサの開発【オムロン(株)、(再委託先:東京大学)】5	57
(1)−(3)−1 4	研究開発の背景と目標5	57
(1)−(3)−2 (202濃度センサの設計・開発5	;9
(1)-(3)-3 (202濃度センサ端末の実証実験7	0
(1)−(3)−4 ⁴	省エネ効果について7	2
(1)−(3)−5 3	まとめ7	'3
 (1)−(3)−6 	参考文献7	'3
①-(4) VOC 濃	農度センサの開発【オリンパス(株)、(再委託先:信州大学)】 7	'5
①-(4)-1 ₩	研究開発の背景と目標7	'5
①−(4)−2 7	ポリマー材料の基本特性の評価7	7
 (1)−(4)−3 7 	ポリマーを用いた共振式 VOC 濃度センサの開発8	31

①−(4)−4	ポリマーを用いた共振式 VOC 濃度センサの高精度化 87
①−(4)−5	センサネットワーク用 VOC 濃度センサの開発と実証検証
①−(4)−6	まとめ
(1)-(4)-7	参考文献
①-(5) 赤夕	ヘ線アレーセンサの開発【オムロン(株)】95
①−(5)−1	研究開発の背景・目的と目標 95
①-(5)-2	赤外線アレーセンサの設計・試作
①−(5)−3	赤外線アレーセンサ端末開発111
①-(5)-4	スマートオフィスワーキングでの赤外線アレーセンサ端末実証114
①-(5)-5	まとめ
①−(5)−6	参考文献118
② 無線通信根	幾能及び自立電源機能を搭載したグリーンセンサ端末の開発119
②-(1) 超小	小型高効率ナノファイバー構造光電・熱電変換自立電源の開発【東京工業大
学、住江織物	か(株) 、日清紡ホールディングス(株) 、(再委託先 : 信州大学) 】 119
②−(1)−1	研究の背景と目標119
②−(1)−2	ナノファイバー構造自立電源の開発【東京工業大学、住江織物(株) 、(再
委託先: 作	言州大学)】121
②−(1)−3	発電・蓄電一体型自立電源モジュールの開発【日清紡ホールディングス(株)、
再委託先	:信州大学】151
②−(1)−4	自立電源モジュール製造技術の開発157
②−(1)−5	自立電源搭載技術の開発【住江織物(株)】163
②−(1)−6	まとめ
②−(1)−7	参考文献164
②-(2) 超/	小型高効率屋内用自立電源システムの開発【ローム(株)】168
②−(2)−1	研究開発の背景と目標168
②−(2)−2	エナジーハーベスティング用発電デバイス(DSC)の開発169
②−(2)−3	センサネットワーク用キャパシタ(EDLC)の開発175
2-(2)-4	超小型高効率屋内用自立電源の結果179
②−(2)−5	中小スマートオフィス実証用自立電源駆動 GSN 端末と GCON 受信機の開発
2-(2)-6	まとめ
②-(3) フリ	ンキシブルクランプセンサの開発【産業技術総合研究所、(一財)マイクロマ
シンセンター	-]

②-(3)-1	研究開発の背景と目標	192
②−(3)−2	フレキシブルクランプセンサの設計・試作	194
②−(3)−3	ワンタッチクランプ構造の設計・試作	206
②−(3)−4	フレキシブルクランプセンサの性能評価	208
②−(3)−5	まとめ	211
②−(3)−6	参考文献	212
②-(4) グリ	リーンセンサ端末・システム超低消費電力化技術の開発【(株)日立製作	「所】
		214
②−(4)−1	研究開発の背景と目標	214
②−(4)−2	端末エネルギーマネジメント回路の設計・試作	216
②−(4)−3	低電力センサ信号処理回路の設計・試作	222
②−(4)−4	開発した端末用 LSI の端末システム評価	227
(2)−(4)−5	まとめ	229
②−(4)−6	参考文献	230
②-(5) グリ	リーンセンサ端末機能集積化技術の開発【産業技術総合研究所、(一財)・	マイ
クロマシンセ	zンター、(株)デンソー、(株)アルバック、大日本印刷(株)】	231
②−(5)−1	研究開発の背景と目標	231
②−(5)−2	ウェハレベルフレキシブル集積化技術の開発 【産業技術総合研究所、	(
財)マイク	ロマシンセンター】	231
②−(5)−3	高アスペクト比超低リーク大容量キャパシタ向け絶縁膜・配線技術の	開発
【(株)デン	/ソー】	246
②−(5)−4	高アスペクト比超低リーク大容量キャパシタ向け Via 形成技術の	開発
【(株)アバ	レバック】	272
②−(5)−5	集積モジュール化技術の開発【大日本印刷(株)】	283
②−(5)−6	まとめ	291
②-(6) 低消	肖費電力無線通信技術の開発【産業技術総合研究所】	293
②−(6)−1	研究開発の背景と目標	293
②−(6)−2	設計	294
②−(6)−3	試作	309
②−(6)−4	実証試験	315
(2)-(6)-5	まとめ	316
(2)-(6)-6	参考文献	316
②-(7) グリ	リーンコンセントレータの開発【(株)NTT データ】	318

②−(7)−1	研究開発の背景と目標	318
②−(7)−2	グリーンコンセントレータの開発	318
②−(7)−3	機器を自動制御するアクチュエート技術の開発	323
2-(7)-4	WiFi メッシュネットワーク・マルチホップ通信技術の開発	331
②−(7)−5	グリーンコンセントレータ端末実証	341
②−(7)−6	まとめ	344
2-(7)-7	参考文献	344
③グリーンセン	ンサネットワークシステムの構築と実証実験	345
③-(1) スマ	マートコンビニのためのグリーンセンサネットワークシステムの	開発【(株)
セブン-イレ	·ブン・ジャパン、産業技術総合研究所】	345
③-(1)-1	研究開発の背景と目標	345
③-(1)-2	実証実験	348
③-(1)-3	無線センサを利用した電流の可視化と省エネ	350
3-(1)-4	無線センサネットワークの構築とグリーンセンサネットワーク	の仕様抽出
		358
3-(1)-5	まとめ	367
③-(2)-i)	スマートオフィスのための(中小オフィス用)グリーンセンサ	ネットワー
クシステムの	の開発【ダイキン工業(株)】	369
③-(2)-i)	-1 研究開発の背景と目標	369
③-(2)-i)	-2 中小オフィス向け省エネ推進システムの開発	370
③−(2)−i)	-3 実証実験	382
③-(2)-i)	-4 活用分野	385
③-(2)-i)	-5 まとめ	387
③-(2)-i)	-6 参考文献	387
③-(2)-i)	-7 補足	388
③−(2)−ii)	ナノファイバー構造自立電源を用いたグリーンセンサネットワ	ークシステ
ムの開発【信	主江織物(株)】	391
③−(2)−ii)-1 研究開発の背景と目標	391
③−(2)−ii)-2 スマートオフィスのための(中小企業小規模オフィス用)グ	リーンセン
サネットワ	ワークシステムの設計	392
③−(2)−ii)-3 省エネ効果	397
③-(2)-ii)-4 まとめ	397
③−(2)−ii)-5 参考文献	398

3)-(3) スマ	マートオフィスのための(大規模商業ビル)グリーンセンサネットワーク	ウシ
ス	テムの開発	٤【高砂熱学工業(株)】	399
	③-(3)-1	研究開発の背景と目標	399
	③-(3)-2	大規模商業店舗での GSN システムの構築と実証実験	401
	③-(3)-3	データ分析システムの開発	417
	3-(3)-4	大規模クリーンルームでの GSN システムの構築と実証実験	419
	③-(3)-5	まとめ	422
3)-(4) スマ	マートファクトリのための(工場・事業場用)グリーンセンサネットワー	ーク
シ	ステムの開] 発【(株)東光高岳、東京電力(株)】	423
	③-(4)-1	研究開発の背景と目標	423
	3-(4)-2	主要製造業種における実証	423
	③-(4)-3	ファクトリ向け電流センサおよびセンサネットワークの構築	435
	3-(4)-4	グリーンセンサ・ネットワークシステムの構築およびフィールド検証	438
	③-(4)-5	グリーンセンサネットワークシステムの構築およびフィールド検証	449
	3-(4)-6	省エネ効果	451
	③-(4)-7	まとめ	451
	3-(4)-8	参考文献	451
3)-(5) スマ	マートファクトリのための(植物工場用)グリーンセンサネットワークシ	ンス
テ	ムの開発	【日清紡ホールディングス(株)】	452
	③-(5)-1	研究開発の背景と目標	452
	(3-(5)-2)	実証場所と設備	452
	(3-(5)-3)	2 次試作機を用いた実証準備	453
	3-(5)-4	2 次試作機を用いた動作検証	454
	3-(5)-5	3 次試作機の NMB 展での展示	458
	3-(5)-6	3 次試作機を用いた実証	458
	(3-(5)-7)	最終試作機を用いた実証	461
	③-(5)-8	省エネ手法	462
	(3-(5)-9)	センサ設置の仕様検討	463
	③-(5)-10	栽培室全区画のセンサ設置と受信率の検証	464
	③-(5)-11	栽培室全区画の環境測定	465
	③-(5)-12	各栽培棚における環境均一化とエネルギーロスの削減による省エネタ	効果
	の検証		466
	③-(5)-13	センサ端末耐久性試験	468

	3-(5)-14	まとめ	470
4	プロジェク	' ト推進及び研究支援	471
(4	④-(1) 研究:	会、委員会活動	471
	④ −(1)−1	グリーンセンサ推進連絡会	471
	④ −(1)−2	知的財産権委員会	472
	④ −(1)−3	共通プラットフォーム委員会	472
	④ −(1)−4	実証推進研究会	472
	④ −(1)−5	知識DB編集委員会	473
(4	④-(2) 広報	發普及活動	473
	④ −(2)−1	ホームページの開設	473
	④-(2)-2	ブログによる情報発信	473
	(4)-(2)-3	新聞・日経テクノロジーオンラインへの掲載	473
	(4)-(2)-4	NEDO プレス発表	474
1.3	8 目的に照	らした達成状況	475
2.	特許、論文、	、外部発表の状況	491
((1)特許(出願	〔者、出願番号、出願地域、出願日、状態、発明の名称、発明者)	491
((2)論文(発表	老、所属、発表内容、発表先、査読、発表年月)	494
((3)外部発表。		497
	(a)学会発表	表・講演(発表者、所属、発表内容、発表先、発表年月)	497
	(b)新聞・	雑誌への掲載(発表者、所属、発表内容、発表先、発表年月)	510
	(c)その他	(発表者、所属、発表内容、発表先、発表年月)	512

1. 研究開発の成果と達成状況

1.1 研究開発の成果

(1)要約(和文)

省エネに資する革新的センサ端末(無線通信機能、自立電源機能、及び超低消費電力機 能を搭載)の開発、それらのセンサを用いたネットワークシステムの構築と省エネ実証を 行い、以下の結果を得た。

①グリーン MEMS センサの開発

電流・磁界センサの開発:100pTから1mTの磁界を検出可能な小型なセンサ部、自立 電源部、および無線通部から成る端末で、平均消費電力65µWを達成した。塵埃量セ ンサの開発:イベントドリブン機能を搭載したセンサ部、自立電源部、および無線通 信部から成る端末で、平均消費電力96µWを達成した。CO2濃度センサの開発:イオ ン液体のガス吸着部、電極部から成る小型センサ部、自立電源部、および無線通信部か ら成る端末で、平均消費電力約40µWを達成した。VOC濃度センサの開発:ポリマーを 用いた共振式センサ部、自立電源部、無線通信部(産総研試作)から成る端末で、平均消費 電力36µWを達成した。赤外線アレーセンサ:サーモパイル型赤外線センサ部、自立電 源部、および無線通信部から成る端末で、平均消費電力95µWを達成した。

②無線通信機能及び自立電源機能を搭載したグリーンセンサ端末の開発

ナノファイバー構造自立電源の開発:室内照明に適した有機半導体と電荷輸送ロスの低 減に有効なナノファイバー構造の利用により室内の低照度環境下で2×5cmのサイズで、 150µW以上の出力を達成した。超小型高効率及び低照度環境向け自立電源システムの 開発:蛍光灯 500 ルクス下で、196µW出力が得られる4直DSCモジュールとEDLC で構成される発電・蓄電一体型モジュールを開発した。グリーンセンサ端末機能集積 化技術の開発:エネルギーマネジメントアルゴリズムをハードウェア実装した端末用LSI を開発し、自立電源の高効率化と端末起動時間の短縮効果を確認した。超低消費電力無線 通信技術の開発:920MHz、315MHz帯を同時受信可能な受信機および通信プロトコル を開発し、1%以下のシンボル誤り率で-130dBmの信号が受信できることを確認した。 グリーンセンサコンセントレータ(GCON)の開発:3G/LTE、WiFi、920MHz、315MHz の各無線ユニットに対応したコンセントレータを開発し、最長で約1年間にわたる実証実 験を行い、クラウドへのデータ送信率約90%を達成した。

③グリーンセンサネットワークシステムの構築と実証開発

コンビニ用センサネットワークシステムの開発:約2千店舗に約1万6千個のセンサ 端末を実装し、3年間にわたりデータを収集した。2014年、1,860店舗で10%の省エ ネを達成した(2012年比)。オフィス用センサネットワークシステムの開発:中小オ フィス用では、単一種類センサ(赤外線アレーセンサ)で、複数オフィスにネットワークシ ステムを構築し、夏期/中間期/冬期の各期間において 10%以上の省エネを達成した。大規 模商業ビル用では、オンラインリアルタイム表示可能な室内環境の見える化システムを開 発し、3種類の大規模商業ビルにネットワークシステムを構築して、10%以上の省エネを 確認した。ファクトリ用センサネットワークシステムの開発:センサデータに基づく 電力ピーク抑制シミュレーションを可能にするため、生産工程の稼働/非稼働(待機 電力)自動判定プログラムおよび電力ピークシフトシミュレーションプログラムを試 作し、これにより 10%以上の省エネを確認した。

(2)要約(英文)

(1) Development of green MEMS sensors

Electric current/magnetic field sensors: developed nodes comprising a small sensor unit capable of detecting magnetic fields within the range 100-1,000 pT, a standalone power (SP) unit, and a wireless communication (WCO) unit that achieved an average power consumption (APC) of 65 μ W. Particle sensors: developed nodes comprising a sensor unit with an event-driven function, a SP unit, and a WCO unit that achieved an APC of 96 μ W. CO₂ sensors: developed nodes comprising a small sensor unit configured of a gas-adsorbing ionic liquid part and electrode parts, a SP unit, and a WCO unit that achieved an APC of approximately 40 μ W. VOC sensors: developed nodes comprising a polymer-based resonance sensor unit, a SP unit, and a WCO unit that achieved an APC of 36 μ W. Infrared array sensors: developed nodes comprising a thermopile infrared sensor unit, a SP unit, and a WCO unit that achieved an average power consumption of 95 μ W.

(2) Development of green sensor nodes possessing WCO and SP supply capabilities

SP source having a nanofiber structure: achieved a 2×5 -cm power source with an output exceeding 150 µW under indoor low-light conditions by employing an organic semiconductor suited to indoor lighting and a nanofiber structure that effectively reduces energy loss in charge transport. Ultra-small, high-performance SP system designed for low-light environments: developed an integrated power generation and storage module configured of electric double-layer capacitors and 4-series dye-sensitized solar cell modules producing an output of 196 µW under 500 lux of fluorescent light. Integrating green sensor node functions: developed a node LSI incorporating an energy management algorithm in hardware and confirmed its effectiveness in improving the performance of the SP source and shortening startup time. Ultra-low power WCO technology: developed a receiver and communication protocol capable of operating simultaneously at 920 MHz and 315 MHz and confirmed its ability to receive a -130 dBm signal at a symbol error rate no

greater than 1%. Development of a green sensor concentrator (GCON): developed concentrators for each of the 3G/LTE, Wi-Fi, 920-MHz, and 315-MHz wireless units and demonstrated through tests spanning up to about one year that the GCONs could transmit data to the cloud at an efficiency of about 90%.

(3) Construction and experimental development of green sensor network systems

Convenience stores: installed approximately 16,000 sensor nodes in about 2,000 stores and collected data from the sensor nodes for a period of three years. 1,860 stores achieved a 10% energy savings in 2014 (compared to 2012). Offices: constructed a network system for multiple small and medium-sized offices employing a single type of sensor (infrared array sensors) and achieved more than 10% in energy savings for each of the summer, winter, and in-between periods.

1.2 本文

グリーンMEMSセンサの開発

①-(1) 電流・磁界センサの開発【横河電機(株)】

①-(1)-1 研究開発の背景と目標

<研究開発の背景>

近年、工場やオフィスビル、商業ビル等の施設において、生産機器や空調機器といった 機器を効率よく運用し、施設全体の省エネルギー化を目指す活動が行われている。機器を 効率よく運用をするためには、機器ごとの稼働状況や消費電力を把握する必要がある。機 器の稼働状況や消費電力は、機器に接続された電力供給用の電線に流れる電流値から推定 することができる。そのため、こうした省エネ活動を行うためには、機器ごとに電流セン サを設置する必要がある。また、機器は施設内に多数点在しており、機器ごとに設置され た多数の電流センサが発信する情報を収集するためには、ネットワークを構築する必要が ある。このようなセンサネットワークシステムにおいては、電流センサの取り扱い性とネ ットワークの構築容易性が導入コストに大きく影響している。現状では、電流センサの取 り扱い性が悪く、有線によるネットワークの構築が必要であるため、導入コストが大きく センサネットワークシステムの普及が進んでいない。そのため、電流センサの取り扱い性 の向上と、無線によるネットワークの構築により導入コストを抑えることが、センサネッ トワークシステムの普及にとって重要である。

<研究開発の目標>

従来のセンサネットワークシステムでは、電流センサとして、CT (Current Transformer) 型電流センサが用いられている。CT 型電流センサは、磁気コアを使用する測定方式であ るため、電流検出感度が高いという特長がある。しかしながら、CT 型電流センサには、 その測定方式ゆえ、①単芯電線上でしか計測できない、②磁気コアで電線を囲わなければ ならない、③磁気コアが必須なため端末の小型・軽量化ができないという3つの制約があ る。これらの制約により、設置場所が電線の分岐部である電盤内に限定され、取り扱い性 が悪く設置コストがかかるという課題があった。

そこで、本研究では、単芯電線上に加え多芯電線上でも電流計測ができる小型・軽量で 取り付けが容易な電流・磁界センサの実現を目指す。その電流・磁界センサの基本性能に 関する目標は次のとおりである。多芯FA(ファクトリーオートメーション)で使われる幅広 い工作機器類・ロボット類・搬送機構類に対応するため、 mAレンジから数 10 A (磁界に よる間接測定で換算; pT 領域から mT領域) までの電流を計測できる電流・磁界センサを 開発する。また、無線式のセンサネットワークシステムに効率よく連動する、センサ部サ

12

イズ $0.4 \text{ mm} \times 2 \text{ mm} \times 2 \text{ mm}$ 以下、全体サイズ $2 \text{ cm} \times 5 \text{ cm}$ 以下、実使用平均消費電力100 μ W 以下の電流・磁界センサ端末の開発を行う。さらに、実証実験により、電流・磁界センサ端末が実用レベルであることを確認する。

①-(1)-2 電流計測技術の開発

本研究では、面積が2 cm×5 cm で、平均消費電力が65 µW、電流レンジが設計上 1mA から 500A まで対応できる実用レベルの電流・磁界センサ端末の開発に成功した。この電 流・磁界センサ端末は、低消費電力で小型な磁気センサ駆動技術と磁気センサを用いた単 芯・多芯電線上での電流計測技術、幅広いレンジを実現する磁気計測技術により実現した。 本項では、これら3 つの技術について説明する。

①-(1)-2-1 低消費電力・小型化を実現する磁気センサの駆動技術

1 つ目の技術として、本研究で開発した電流・磁界センサの小型化・低消費電力化に寄 与した磁気センサの駆動技術について説明する。その説明にあたり、本研究で用いた低消 費電力な電流計測に適した磁気センサについても説明する。

①-(1)-2-1-1 低消費電力な電流計測に適した磁気センサとその駆動方法

磁気センサには、ホール効果を用いたホール素子や、磁気抵抗効果を用いた磁気抵抗素 子、磁気インピーダンス効果を用いた磁気インピーダンス素子、軟磁性体コアとコイルで 生成した変調磁場を計測するフラックスゲートセンサなどがある。

本研究では、pT 領域の磁界計測ができる高感度な磁気センサが必須である。そのため、 磁気抵抗素子と磁気インピーダンス素子の2つに絞り、センサの駆動に必要な電力と、検 出回路の消費電力の2つの観点で比較した。その結果、センサと検出回路の両方において 低消費電力で駆動できる磁気抵抗素子を採用した。本研究で用いた磁気抵抗素子を図① -(1)-2-1-1.1 に示す。磁性材料と微細加工技術を活用した磁気抵抗素子において、飽和磁界 特性を制御することでセンサ部の小型化を実現し、センサ部サイズを 0.6mm×1.5mm× 0.5mm にすることに成功した。

磁気抵抗素子: 1.5×0.6×0.5mm

図①-(1)-2-1-1.1 磁気抵抗素子の外観

磁気抵抗素子の磁気特性は、磁気抵抗効果により磁界の印加によって抵抗値が変化する という特性である。印加磁界と抵抗値の変化率の関係の概略図を図①-(1)-2-1-1.2 に示す。 図①-(1)-2-1-1.2 中の(a)のように、磁気抵抗素子は、動作点である0磁界付近では感度が 小さく非線形を示す。そのため、あらかじめバイアス磁界を印加し、動作点を図① -(1)-2-1-1.2 中の(b)のようにシフトさせることで、高感度かつ高い直線性を示すように なる。このように、高い直線性を示す動作点で使用すること、増幅や補正に必要な消費電 力の削減により電流・磁界センサ端末の低消費電力化に寄与した。

図①-(1)-2-1-1.2 磁気抵抗素子における磁気特性の概略図

①-(1)-2-1-2 小型な低強度バイアス磁界印加技術

本研究で用いた磁気抵抗素子を高感度かつ高い直線性を示す動作点で使用するために は、磁気抵抗素子にバイアス磁界を印加する必要がある。バイアス磁界を印加する方法と して、一般的には、コイルに電流を流すことで発生する磁界を印加する方法¹⁾と、永久磁 石から生じる磁界を印加する方法がある。コイルによってバイアス磁界を印加する場合は、 コイルの駆動電流によってバイアス磁界強度を容易に制御することができる。しかし、コ イルの駆動電流が必要であるので低消費電力化が困難である。永久磁石によってバイアス 磁界を印加する場合は、コイルで印加する場合に必要な駆動電流が不要であるため、無電 力で印加することができる。しかし、高感度な磁気抵抗素子において、動作点の設定に必 要な磁界強度は100e以下であり、永久磁石から生じる磁界強度と比べて非常に小さい。 そのため、永久磁石でバイアス磁界を印加しようとすると、永久磁石と磁気抵抗素子との 距離が長くなるため、センサ全体として大きくなる。

本研究では、低強度なバイアス磁界を印加する無電力かつ小型な機構を実現するために、 永久磁石と軟磁性体からなる構造を考案し²⁾、その開発に成功した。図①-(1)-2-1-2.1 に永 久磁石と軟磁性体を組み合わせた構造体の概略図を示す。永久磁石にはサマリウムコバル ト磁石を、軟磁性体にはパーマロイ B を用いた。また、試作した構造体を図①-(1)-2-1-2.2 に示す。

図①-(1)-2-1-2.1 設計した永久磁石と軟磁性体からなる構造体

図①-(1)-2-1-2.2 試作した永久磁石とパーマロイBからなる構造体の写真

本構造体を用いたセンサパッケージを試作し、図①-(1)-2-1-2.1の中で示したパーマロ イBの形状因子(X)とバイアス磁界強度の関係を評価した。その結果を図①-(1)-2-1-2.3 に示す。図①-(1)-2-1-2.3より、バイアス磁界強度は、パーマロイBの形状因子(X)に対 し単調に変化することがわかった。また、本構造体により、10 0e 以下のバイアス磁界 を磁気抵抗素子に印加できることがわかった。このことから、無電力かつ小型でありな がら、磁気抵抗素子に対して低強度なバイアス磁界を印加できる構造体の開発に成功し たと結論づける。

図①-(1)-2-1-2.3 バイアス磁界強度とパーマロイ Bの形状(X)の関係

①-(1)-2-2 単芯・多芯電線上での電流計測技術

2 つ目の技術として、本研究で開発した電流・磁界センサの小型化・低消費電力化に寄 与した単芯・多芯電線上での電流計測技術について説明する。単芯電線上での電流計測技 術については、複数の磁気抵抗素子により単芯電線に流れる電流を高精度に計測する電流 計測技術(高精度電流計測技術)と、端末を電線に貼り付けるだけで計測ができる電流計 測技術(貼付型電流計測技術)の2つを説明する。

①-(1)-2-2-1 単芯電線上での電流計測技術

a. 高精度電流計測技術

導体に電流が流れると、ビオ・サバールの法則に基づき導体周囲に磁界が発生する。図 ①-(1)-2-2-1.1 は、単芯電線に電流が流れた場合に発生する磁界のようすを表した模式図で ある。単芯電線の周囲に発生する磁界の分布は、電線の被覆のような非磁性材の影響を受 けない。そのため、図①-(1)-2-2-1.2 のように、電線の被覆表面付近に磁気抵抗素子を設置 することで、電線の導体部に流れる電流から生じる磁界を検出することができる。電線が 十分に長い場合、導体の中心と磁気抵抗素子の間の距離を決めることで、アンペールの法 則より、検出した磁界の大きさから電流値を算出することができる。しかしながら、この 方法では磁気抵抗素子と電線との間の距離のずれや、電線径の誤差などにより測定誤差が 生じる。そのため、原理上は、1 つの磁気抵抗素子により電流計測はできるが、実際には、 測定誤差が大きくなり実用的ではない。

図①-(1)-2-2-1.1 単芯電線に電流が流れたときに発生する磁界

図①-(1)-2-2-1.2 1つの磁気抵抗素子による電流計測の様子

そこで、本研究では、4 つの磁気抵抗素子で構成することで、磁気抵抗素子と電線との 間の距離のずれによって生じる誤差(位置ずれ誤差)を低減し、高精度に電流を計測する 方法を考案した。具体的な構成は、図①-(1)-2-2-1.3 に示すように、電線を中心とした円周 上に4つの磁気抵抗素子を等間隔に配置したものである。ここで、磁気抵抗素子の感磁方 向とバイアス磁界方向は円周の接線方向を向いており、バイアス磁界の向きは、円周に沿 って隣り合う磁気抵抗素子同士で円周方向に対して互いに逆向きである。

図①-(1)-2-2-1.3 高精度な電流計測を実現する磁気抵抗素子の配置と回路構成

位置ずれ誤差について、4 つの磁気抵抗素子で構成した場合(センサ A)と1 つの磁気 抵抗素子で構成した場合(センサ B)との違いを比較するために、シミュレーションを行 った。シミュレーションに用いたモデルを図①-(1)-2-2-1.4 に示す。図①-(1)-2-2-1.4 のよう に、電線を中心とする直径 21.2 mm の円周上に磁気抵抗素子を配置する。また、電線の中 心を原点とする極座標系を設定し、位置ずれ距離の大きさをr、ずれの方向をθとする。r を 0.4 mm、1.2 mm、2.0 mm、 θを 0~360°とした場合のシミュレーション結果を図① -(1)-2-2-1.5 に示す。図①-(1)-2-2-1.5 より、一部の位置ずれ方向を除き位置ずれ距離の大き さが 2 mm のとき測定誤差が最大となった。全位置ずれ方向にわたる誤差の平均値を、位 置ずれによって生じる誤差の指標とすると、位置ずれ距離の大きさが 2 mm において、4 つの磁気抵抗素子で構成した場合は 0.087 % で、1 つの磁気抵抗素子で構成した場合は 12.1 % であった。このことから、4 つの磁気抵抗素子で構成した構造により、全位置ずれ 方向にわたる誤差の平均値を 1/139 に低減できることがわかった。

図①-(1)-2-2-1.4 位置ずれによる誤差の評価用シミュレーションモデル

図①-(1)-2-2-1.5 位置ずれによる誤差のシミュレーション結果

高精度電流計測技術を用いた定格電流 30 Arms の評価用電流・磁界センサを試作した。 センサの外観写真を図①-(1)-2-2-1.6 に示す。シミュレーションモデルと同様に直径 21.2 mmの円周上に4つの磁気抵抗素子を配置した。0 Arms から30 Arms の50 Hz 交流電流 を電線に流し、そのときの出力電圧の実効値を測定した。ブリッジ電圧は、3.0 V とした。 その結果を図①-(1)-2-2-1.7 示す。図①-(1)-2-2-1.7 より、感度 130 mV/A で最大直線性誤差 は 0.9 %FS であった。この結果より、本電流・磁界センサが直線性誤差 1 %FS 以下の直 線性が高いセンサであることが確認できた。

図①-(1)-2-2-1.6 評価用電流・磁界センサの外観

図①-(1)-2-2-1.7 評価用電流・磁界センサの出力特性

図①-(1)-2-2-1.6 に示した評価用電流・磁界センサを用いて、位置ずれによって生じる誤 差について評価した。その結果を図①-(1)-2-2-1.8 に示す。なお、座標系は図①-(1)-2-2-1.4 で示したものと同様である。

図①-(1)-2-2-1.8 位置ずれによって生じる誤差の評価結果

図①-(1)-2-2-1.8 では、 $\theta = 0^{\circ}$,45°における位置ずれによる誤差の実測値とシミュレーション値を示している。この結果より、位置ずれ距離の大きさが 2 mm における実測値 とシミュレーション値との比は $\theta = 0^{\circ}$ では 5.4、 $\theta = 45^{\circ}$ では 2.5 であった。このことか ら、全位置ずれ方向にわたる誤差の平均値を、実測値と計算値の比が大きかった $\theta = 0^{\circ}$ での比をもとに算出すると、0.47% である。つまり、試作した評価用電流・磁界センサで は、4 つの磁気抵抗素子を円周上に配置することで、1 つの磁気抵抗素子で測定した場合と 比較し、全位置ずれ方向にわたる誤差の平均値を 1/26 にすることができることが示され た。

以上の結果より、単芯電線の周囲を磁気抵抗素子で囲うことで、その電線に流れる電流

を高精度に計測できること確認し、高精度電流計測技術の開発に成功したと結論付ける。

b. 貼付型電流計測技術

高精度電流技術の説明では、単芯電線の周囲を磁気抵抗素子で囲うことで、その電線に 流れる電流を高精度に計測できることを示した。この高精度電流計測技術を用いた電流・ 磁界センサは、従来使用されている CT 型電流センサと比較し、磁性コアが不要なため小 型・軽量化できるため、CT 型電流センサに替わるセンサである。しかしながら、高精度 電流計測技術を用いた電流・磁界センサは、CT 型電流センサと同様に電線の周囲を囲う 基板あるいは外枠を必要とする。そのため、多数の電線が束ねられている環境では、電線 を囲うことができないため取り付けることができないという制約があった。また、取り付 けることができる環境であったとしても、CT 型電流センサと同様に取扱い性が悪いとい う問題があった。そこで、本研究では、絶対精度を重要視しない用途に対して、取扱い性 の向上を目的とした貼付型電流計測技術を考案した。

貼付型電流計測技術とは、単芯電線に磁気抵抗素子を貼り付けるだけで電流計測ができ るという計測技術である。単純に電線に磁気抵抗素子を貼り付けただけでは、①-(1)-2-2-1 で示したように、取り付け対象の電線の径が想定していた電線径と違った場合や、電線径 の誤差により測定誤差が生じるため絶対精度が大幅に悪化する。そのため、電線の中心か ら異なる距離に配置された2つの磁気抵抗素子の出力により、電線径の違いによって生じ る測定誤差を抑え、任意の電線径に対して貼り付けるだけで電流計測ができるという技術 である。

具体的な構成を図①-(1)-2-2-1.9 に示す。図①-(1)-2-2-1.9 のように、電線の中心から異なる距離に 2 つの磁気抵抗素子(磁気抵抗素子 A と磁気抵抗素子 B)を配置する。このとき、 電線の中心からみた 2 つの磁気抵抗素子の間の距離は既知とする。

図①-(1)-2-2-1.9 貼付型電流計測技術における磁気抵抗素子の配置

電線が十分に長い場合、アンペールの法則より、各磁気抵抗素子における磁界強度(H_A, H_B)は式①-(1)-2-2-1.1 と式①-(1)-2-2-1.2 で表される。

$$H_{A} = \frac{I}{2\pi r_{A}} \qquad \cdots \quad \vec{x} (1) - (1) - 2 - 2 - 1.1$$
$$H_{B} = \frac{I}{2\pi r_{B}} \qquad \cdots \quad \vec{x} (1) - (1) - 2 - 2 - 1.2$$

ここで、I は電線に流れる電流の大きさであり、 $r_A \ge r_B$ はそれぞれ電線の中心と磁気抵抗素子 A の間の距離と、電線の中心と磁気抵抗素子 B の間の距離である。また、電線の中心からみた 2 つの磁気抵抗素子の間の距離を d とすると、d は $r_A \ge r_B$ の差で表すことができ、 $r_B > r_A \ge$ した場合、式①-(1)-2-2-1.1 と式①-(1)-2-2-1.2、電流の大きさ I は式①-(1)-2-2-1.3 で表される。

$$I = 2\pi d \cdot \frac{H_A \cdot H_B}{H_A - H_B} \qquad \cdots \quad \vec{\texttt{T}} (1) - 2 - 2 - 1.3$$

さらに、磁気抵抗素子 A と磁気抵抗素子 B の磁界に対する感度をそれぞれ α_A と α_B、計測 時の出力電圧をそれぞれ V_A と V_B とすると、電流の大きさ I は式①-(1)-2-2-1.3 を用いて式 ①-(1)-2-2-1.4 で表される。

$$I = 2\pi d \cdot \frac{V_A \cdot V_B}{\alpha_A \cdot V_A - \alpha_B \cdot V_B} \qquad \cdots \quad \overrightarrow{rt} (1) - 2 - 2 - 1.4$$

式①-(1)-2-2-1.4 より、電流の大きさ I は電線の中心と各磁気抵抗素子との間の距離の項を 含まないことがわかる。つまり、任意の電線径に対して、電流の大きさ I を補正なしで求 めることができる。

貼付型電流計測技術を用いた評価用電流・磁界センサを試作した。センサの外観写真を 図①-(1)-2-2-1.10 に示す。樹脂で製作した階段状の台座おいて、各段に磁気抵抗素子を配 置した。段差の大きさは5 mm とした。本センサを樹脂製のフレームに固定し、既知の電 流が流れた直径 5.0 mm、7.6 mm、11.5 mm の各電線に貼り付け、電流を計測した。計測結 果を図①-(1)-2-2-1.11 に示す。図①-(1)-2-2-1.11 より、直径 5.0 mm、7.6 mm、11.5 mm の電 線径に対して誤差 5%以下で計測できることがわかった。このことから、貼り付けるだけ で電流計測を実現する技術の開発に成功したと結論付ける。

図①-(1)-2-2.1.10 貼付型電流計測技術を用いた評価用電流・磁界センサの外観写真

●D5.0mm ●D7.6mm ●D11.5mm

図①-(1)-2-2-1.11 各電線径における電流計測結果

①-(1)-2-2-2 多芯電線上での電流計測技術

従来使用されている CT 型電流センサでは、磁性コアで電線周囲を囲う構造のため、電 流計測ができるのは単芯電線上に限られていた。そのため、計測場所は電力ケーブルが分 岐する分電盤内に限られ、分電盤に直接接続された装置の消費電流しか計測できなかった。 実際には、分電盤に対して主要な装置を介して間接的に接続された周辺装置は多数ある。 本研究では、主要な装置の稼働状態における各周辺装置の消費電流を明らかにすることで、 さらなる消費エネルギーの削減を実現できると考えた。また、周辺装置の老朽化による消 費電流の増加や故障等の早期発見により、消費エネルギーの削減だけでなく工場等の生産 効率の向上に貢献できると考えた。 主要な装置から周辺装置への電力供給は多芯電線で行われており、電線の分岐部は装置 内であるため CT 型電流センサの取り付けけは困難である。そこで、本研究では、多芯電 線上で計測できる電流計測技術を考案した。多芯電線上で電流計測を可能にする計測原理 の概念図を図①-(1)-2-2-2.1 に示す。図①-(1)-2-2-2.1 では、単相電源に接続された2芯の電 線の場合について示している。2本の芯線には、周波数と振幅が同じで位相が180°ずれた 電流が流れる。そのため、2本の芯線からは互いに打ち消す方向の磁界が発生する。CT 型 電流センサでは、多芯電線の周囲一周分の積分された磁界を検出するため、検出磁界は0 となる。しかし、2本の芯線は同一の場所にはないため、芯線近傍の磁界は完全には打ち 消されていない。そのため、磁気抵抗素子による局所的な磁界計測により、多芯電線上に おいて芯線に電流が流れることで生じる磁界を検出することができる。

図①-(1)-2-2-2.1 多芯電線上での磁界検出の概念図

しかしながら、ただ磁界を検出しただけでは、電流を計測することはできない。多芯電 線上の電流計測の場合、芯線同士の磁界が互いに作用することと、芯線同士が撚ってある ため、単芯上での電流計測のようにアンペールの法則を用いて検出した磁界強度から電流 値を算出することができない。これらの課題を解決するための次に示す電流計測技術を考 案した。

まず、多芯電線に電流・磁界センサを設置する際に、多芯電線内の芯線と磁気抵抗素子 との相対的な位置を一義的に決定する。その位置とは、電流が流れている芯線の中の一本 の芯線と磁気抵抗素子との距離が最も小さくなる位置である。その位置を磁界強度の観点 からみると、電流・磁界センサを多芯電線の線方向あるいは周方向のうちいずれか一方の 方向に電流・磁界センサを移動させ、磁界強度が極大となる位置である。

次に、一義的に決定された多芯電線内の芯線と磁気抵抗素子の位置関係において、あら かじめ電磁界シミュレーションによりあらかじめ用意した磁界検出値から電流値を算出す るための補正係数群から、測定対象の多芯電線に適した補正係数を決定する。多芯電線の 場合、内部の芯線の径や芯線の配置は仕様により規定されており、多芯電線の開発元から 仕様を入手することができるため、容易に補正係数を決定することができる。 多芯電線上での電流計測技術を評価するための評価用電流・磁界センサを試作した。センサの外観写真を図①-(1)-2-2-2.2 に示す。図①-(1)-2-2-2.2 で示したセンサは、プリント基板の上に1つの磁気抵抗素子を実装したものである。

図①-(1)-2-2-2.2 多芯電線上での電流計測技術を用いた評価用電流・磁界センサ

本センサを樹脂製のフレームに固定し、フレームを2芯の多芯電線に固定した。芯線を 単相電源に接続し電流を流した。電流を0Aから20Aまで4A刻みで変えていき、その電 流を計測した。電流の計測結果を図①-(1)-2-2-2.3に示す。図①-(1)-2-2-2.3で示した結果の 縦軸は、センサの出力電圧値に実験で用いた3芯電線に対応する補正係数を掛けたもので ある。図①-(1)-2-2-2.3より、電流計測値は、電流設定値に対して最大で7.1%FS ずれであ った。このことから、確度10%以下の多芯電線上での電流計測技術の開発に成功したと結 論づける。

図①-(1)-2-2-2.3 多芯電線上での電流計測結果

①-(1)-2-3 電流・磁界センサのレンジ設計

電流・磁界センサのレンジを設計するために、本研究で用いた磁気センサの磁気検出性 能を評価した。評価方法は、ヘルムホルツコイル(図①-(1)-2-3.1)を用いて磁気センサに 磁界を印加し、その磁界に対する磁気センサの応答を検出するという方法である。

図①-(1)-2-3.1 磁気検出性能評価用ヘルムホルツコイル

まずは、mT 領域の磁界に対する応答を評価するため、ヘルムホルツコイルにより磁気 センサに対して ±1 mT 程度の磁界を印加した結果を図①-(1)-2-3.2 に示す。磁気センサに は、あらかじめバイアス磁界を印加してある。図①-(1)-2-3.2 より、1mT の磁界を検出でき ることを確認した。

図①-(1)-2-3.2 mT 領域における磁気検出性能の評価結果

次に、pT 領域の磁界に対する応答を評価した。pT 領域の磁界の評価では、磁気センサ 部周囲に形成された小型コイルにより磁界を印加する方法を用いた。そのコイルに電流を 流し、100 pT レベルの磁界を発生させる。検出回路には、高次フィルタ回路と同期検波回路を用いた。磁界が発生している時のセンサの出力から、磁気センサが応答しているか判断する。コイルに流す電流のスイッチを OFF→ON→OFF→ON→OFF と制御した場合の評価を図①-(1)-2-4.3 に示す。磁気センサに印加した磁界は、コイルに流した電流の実測値から1回目:112 pTrms、2回目:113 pTrms であった。図①-(1)-2-4.3 の結果より、100 pT レベルの磁界を検出できることを確認した。このことから、電流レンジの下限側である mAレンジを計測できると結論づける。

図①-(1)-2-3.3 pT 領域における磁気検出性能の評価結果

100 pT~1mT の磁界検出感度があることが確認できたので、電流・磁界センサの電流レ ンジの設計を実施した。設計目標は、磁気センサと電線表面との距離を 10 mm 以上の範 囲で調整することで、電流・磁界センサの定格電流と同じ大きさの電流が流れた場合に発 生する磁界を 1mT 以下にし、1mA の電流が流れた場合に発生する磁界を 100 pT 以上にす ることである。設計する電流・磁界センサの定格電流を 50 A、100 A、500 A とし、JIS C 3605 に準拠した 4 芯の電線に設置することとした。定格電流に対応した電線の外形と、センサ と電線表面の距離、定格電流と 1mA の電流が流れるときに発生する磁界を表①-(1)-2-3.1 に示す。

定格 電流[A]	電線 外径[mm]	センサー電線表面間 距離[mm]	定格電流時 発生磁界[uT]	1mA時 発生磁界[nT]
50	17	10	227	4.5
100	24	10	446	4.5
500	77	20	946	1.9

表①-(1)-2-3.1 定格電流と発生磁界の関係

表①-(1)-2-3.1 より、定格電流が 50 A と 100 A の場合は、磁気センサと電線表面の距離 が 10 mm において、設計目標を達成できることがわかった。定格電流が 500 A の場合は、 磁気センサと電線表面の距離を 20 mm にすることで、設計目標を達成できることがわかっ た。以上より、1 mA~500 A の電流レンジに対応した電流・磁界センサを実現できると結 論付ける。

①-(1)-3 電流・磁界センサ端末の試作と実証実験

本研究の3つ目の目標は、開発した電流・磁界センサが実環境下において実用レベルで あることを示すことである。①-(1)-2-3 で示した多芯電線上での電流計測技術を用いた電 流・磁界センサと、本プロジェクトで開発された自立電源(②-(2)参照)とエネルギーマ ネジメント LSI(②-(4)参照)、無線モジュール(②-(6)参照)を搭載した電流・磁界セン サ端末を用いて実証実験を行った。その結果、実環境下において本端末が自立電源で駆動 し、多芯電線に流れる電流を計測でき、無線通信によるデータ送信ができることを確認し た。試作した電流・磁界センサ端末と実証実験の詳細について以下に示す。

①-(1)-3-1 多芯電線用電流・磁界センサ端末の試作

多芯電線上での電流計測技術を用いた電流・磁界センサ基板を試作した。試作した基板 を図①-(1)-3-1.1 に示す。図①-(1)-3-1.1 で示した基板は、電流が流れることで発生する磁界 を計測する磁気抵抗素子を内包したセンサパッケージと、交流信号の振幅を出力する回路 からなる。また、多芯電線への設置に際し所定の場所に端末を設置するために、外付けの 装置の接続によりリアルタイムで計測値を出力する機能も搭載している。

図①-(1)-3-1.1 実証実験用電流・磁界センサ基板

図①-(1)-3-1.1 で示した電流・磁界センサ基板と、本プロジェクトで開発された自立電源 (②-(2)参照)、エネルギーマネジメントLSI(②-(4)参照)、無線モジュール(②-(6)参照) を搭載した電流・磁界センサ端末を試作した。試作した端末を図①-(1)-3-1.2 に示す。本端 末の平均消費電流は実測値で約 35 µA であり、1.8V で駆動であることと合わせ、平均消費 電力が約 63 µW となることを確認した。また、実環境下で想定される照度 500 Lux の蛍光 灯化においても動作することを確認し、本端末を実証実験に投入した。

図①-(1)-3-1.2 試作した電流・磁界センサ端末

①-(1)-3-2 多芯電線用電流・磁界センサ端末による実証実験

図①-(1)-3-1.2 に示した電流・磁界センサ端末による実証実験を、クリーンルーム内で実施した。実証実験では、電流・磁界センサが実環境下において実用レベルであることを示すことに加え、電流・磁界センサにより分電盤から直接電力供給されている主要装置の消費電流の内訳を明らかにすることを目的にしている。そのため、分電盤と主要装置間の電力供給用電線ではなく、主要装置と周辺装置間の電力供給用電線に電流・磁界センサを設

置することとした。

クリーンルーム内のレイアウトの概略図を図①-(1)-3-2.1 に示す。エッチング装置とポン プ間の電力供給用電線と、成膜装置と2つのポンプ間の電力供給用電線に電流・磁界セン サを設置した。図①-(1)-3-2.1 内のポンプ1~ポンプ3における電流・磁界センサの設置の ようすを図①-(1)-3-2.2 に示す。電流・磁界センサの設置場所の照度は、ポンプ1~ポンプ 3 において、それぞれ 417 Lux、322 Lux、363 Lux であった。

図①-(1)-3-2.1 クリーンルーム内のレイアウトの概略図

図①-(1)-3-2.2 電流・磁界センサの設置時の外観

ポンプ1~ポンプ3の消費電流を1週間計測した。その結果を図①-(1)-3-2.3に示す。計 測のサンプリングレートは2分とした。図①-(1)-3-2.3より、ポンプの消費電流を計測でき ることを確認できた。また、これらのポンプは200Vで駆動することから、消費電力はお よそ2kWであることがわかった。ポンプ2とポンプ3に電力供給をする成膜装置の消費 電力は9kWである。つまり、成膜装置の消費電力のうちポンプ②とポンプ③がそれぞれ 約22%の割合を示すことがわかった(図①-(1)-3-2.4)。つまり、多芯電線上での電流計 測により、今まで計測が困難であった周辺装置の消費電力を明らかにできることが示され た。消費電力の内訳のデータから、例えば「ポンプの駆動時間を22.5%削減するような 間欠駆動をさせることで10%の省エネ効果がある」といった具体的な省エネ提案につな げられることが示された。

図①-(1)-3-2.3 1週間分の消費電流計測データ

成膜装置の消費電力

図①-(1)-3-2.4 成膜装置の消費電力の内訳

①-(1)-4 まとめ

小型な磁気抵抗素子(0.6 mm×1.5 mm×0.5 mm)に対して、無電力でバイアス磁界を印 加する磁石と軟磁性体から小型構造体を開発した。これにより、磁気抵抗素子の駆動部分 の低消費電力・小型化に成功した。

磁気抵抗素子を用いた単芯・多芯電線上での電流計測技術を開発した。これにより、従来の CT 型電流センサよりも計測可能な範囲を拡大し、取扱い性を向上した貼付型の電流・ 磁界センサの開発に成功した。

本研究で用いた磁気センサに磁気検出性能を評価した結果、100 pT から 1 mT の磁界を 検出できることを確認した。この結果より、50A から 500 A の各定格電流に対応した電流・ 磁界センサを設計し、1mA から 500 A の電流を計測できる電流・磁界センサを実現できる ことを確認した。

本プロジェクトで開発された自立電源(②-(2)参照)とエネルギーマネジメントLSI(② -(4)参照)、無線モジュール(②-(6)参照)と組み合わせることで、面積が2cm×5cmで、 平均消費電力が65 µWの小型・低消費電力の電流・磁界センサ端末の開発に成功した。 上記電流・磁界センサ端末を用いて実証実験を行った。その結果、実環境下において自立 電源で駆動し、電流計測結果を無線通信によって送信ができることを確認し、開発した電 流・磁界センサ端末が実用レベルであることを示した。

①-(1)-5 参考文献

1) A. Takayama, T. Umehara, A. Yuguchi, H. Kato, K. Mohri, T. Uchiyama : "Integrated thin film magneto-impedance sensor head using plating process", IEEE Trans. on Mag., VOL.35, NO.5, PP. 3643-3645 (1999)

2) 三戸,竹中,加藤: "超小型電流センサにおける低バイアス磁界印加用構造体の開発",
 2013 年度精密工学会春季大会学術講演会講演論文集, PP. 165-166(平 25)

32

①-(2) 塵埃量センサの開発【セイコーインスツル(株)、(再委託先:東京大学)】

①-(2)-1 研究開発の背景と目標

<研究開発の背景>

精密部品工場では品質管理のため空気中の塵埃量を空調によって制御しているが、安 全率を考慮して多くの場合過剰品質となっており、無駄なエネルギーを消費してしまっ ている。このような背景から、無線センサネットワークシステムを用いた環境の見える 化を行い、そのデータから効率的な空調管理等を行う研究が盛んに行われている。しか し、空調の制御精度を向上させるためには、多数の環境測定用センサ端末が必要となり、 必要とされる場所に容易に設置可能(レイアウトフリー)な自立型センサが望まれる。特に 従来の塵埃量センサは他の環境センサと比較しサイズ・消費電力が大きく、多点計測に は適していなかった。そこで本プロジェクトでは、測定アプリケーションを塵埃量計測と し、塵埃量センサを低消費電力化しグリーンセンサ端末へ搭載するために、塵埃量センサ を必要なときにだけ駆動するイベントドリブン技術を検討する。塵埃量センサを無線セン サネットワークに組み込むことで、精密部品工場内の局所的な塵埃量の見える化し、その 情報を空調制御にフィードバックすることで精密部品工場の省エネが可能となる。

<研究開発の目標>

本研究開発では、自立電源を搭載したグリーンセンサ端末に搭載するための、低消費電 力塵埃量センサを開発する。また低消費塵埃量センサ実現に必要となるトリガー技術につ いて、特定の状態変化(イベント)を検出する手法および構造と、低消費電力を実現するデ バイス構成を研究する。図①-(2)-1.1 はトリガー機能を付加した低消費電力塵埃量センサの イメージ図であり、トリガーイベントを検出するためのトリガー部と塵埃量検出部で構成 されている。本塵埃量センサは室内の空気の流れや圧力変化など特定のイベントが発生し たことをトリガー部で検出し、閾値を超えた場合、塵埃量検出部が起動する(図①-(2)-1.2)。 特定のイベントが発生しても閾値を超えない場合は、塵埃量検出部は動作しない。このよ うな動作をさせることにより、塵埃量センサの低消費電力化が可能となる。

図①-(2)-1.1 トリガー機能を付加した低消費電力塵埃量センサのイメージ図

図①-(2)-1.2 トリガーと塵埃量センサの連動原理のイメージ図

塵埃量センサを設置する環境を精密部品工場や組み立て工場と想定し、塵埃量変化の直 接的な原因と成り得る人の動きに関連したドアの開閉による気圧の変化や空気の流れをト リガーイベントとする。精密部品工場、特にクリーンルームを想定した場合、クリーンル ーム内外での気圧差は10Pa程度であり、トリガー部は少なくとも10Pa程度の圧力変化を 検出できる必要がある。また、トリガー部はイベント監視のため常時駆動している必要が あり、消費電力は数 μW であることが要求される。これらを満たすトリガーのセンサ素子 としては、圧電体を用いた発電型センサと FET やコンパレータの組み合わせが考えられる。 圧力変化を検知する圧電体の出力電圧が FET のゲート電圧やコンパレータ内部の閾値を 超えたときに FET に電流が流れるもしくはパルス電圧を発生させるようなスイッチとし て構成する。センサ素子を圧電体で構成し、その起電力を利用するため、原理的に待機電 力を消費せず、高感度で低消費電力の圧力変動検知センサ(差圧センサ)を実現できると考 えられる。

具体的な構造として、気圧変化を検出する構造は図①-(2)-1.3 に示すようなカンチレバー型の差圧センサに空気室(キャビティ)を取り付けた構造を想定する¹⁾。薄膜のカンチレバー型のセンサは従来のダイアフラム式のセンサと比較して、力に対して変形しやすいため感度が高い²⁾。圧電体としては優れた化学的安定性、低誘電率を持つ AIN(窒化アルミニウム)を想定している³⁾⁻⁴⁾。

低消費電力な塵埃量センサを実現するためには、センサ自身の消費電力を低減するのに 加え、必要な時に短時間だけ測定を行う間欠動作でも十分な精度で塵埃量を測定できるこ とが必要である。従来の塵埃量センサは、ファンで常時駆動して空気を取り込み、レンズ で集光したレーザ光を、ファン流路部に照射する⁵⁾⁻⁷⁾。ファンにより取り込まれた空気中 に塵埃が存在すると、その光は塵埃により散乱されるため、その散乱光をレンズで集光し、 フォトダイオードで検出する。検出された信号の強度などから、塵埃量、塵埃の大きさを 識別する。本研究では原理は従来と同じながら、各素子の低消費電力化と小型化をはかり、 かつトリガー部により間欠駆動可能な塵埃検出部を開発する(図①-(2)-1.3)。

本研究の目標として、10Pa 程度の気圧変化及び空気流れをトリガー部で検出し、その出 カにより塵埃検出部を起動させ、クラス 10 万程度、粒子径 5 µm 以下の塵埃を検出するこ とを目指す。また、面積 2 cm×5 cm 以下のサイズと 100 µW 以下という低消費電力の実現 を目指す。これに必要となる小型、高感度なトリガー部は MEMS 技術を用いて開発する。 さらに、上記塵埃量検出部の技術開発は研究組合から東京大学情報理工学系研究科への再 委託により実施する。最終的にトリガー部と塵埃量検出部の開発成果を統合し、低消費電 力塵埃量センサとしてユニット化する。

35

図①-(2)-1.3 各センサの原理のイメージ図

①-(2)-2 トリガー部の開発

①-(2)-2-1 圧電素子型カンチレバーによる圧力変動検出原理

図①-(2)-2-1.1 は、提案する圧電素子型カンチレバーの概念を示すイメージ図である。本 塵埃センサでは 10Pa 程度の圧力変化をトリガーとするため、トリガー部には、小さな変形 でできるだけ大きな起電力を生じる材料を使うことが望ましい。圧電材料である AIN は、 PZT と比較し圧電定数は 1/20 と小さいが誘電率も 1/100 と小さい。FET やコンパレータと いった回路への入力にはカンチレバーから出力される電圧の大きさが重要となる。そのた め、V=Q/C(V:電圧、Q:電荷量、C:キャパシタンス)の関係から、カンチレバーから取り 出せる電圧は AIN の方が大きくなる。したがって、本開発では圧電材料として AIN を用い る。

上部電極と下部電極の間に挟まれた AIN 薄膜は、周囲にマイクロメートルサイズのギャ ップを配した薄い Si カンチレバー構造の根元に形成されている。またカンチレバーの下部 には微小な空気室を有するキャビティが設置されており、キャビティ内と外気はカンチレ バー周囲のギャップを介してつながっている。外気圧が変化した場合、ギャップが微小な ため、キャビティ内の圧力はすぐに外気とは同一とはならず圧力差が生じる。カンチレバ ーの上面と下面に圧力差が生じると、カンチレバーが変形し、AIN 層はこの変形に従って 圧電電荷を発生する。この時に発生する電荷量 Q は、次式で与えられる⁸⁾⁻⁹⁾。

式中の記号は表①-(2)-2-1.1 のとおりである。変数 *d*₃₁ は AIN の圧電係数であり、*M* はカ ンチレバーに作用する曲げモーメントである。また *w* は電極の幅である。カンチレバーの
z 方向に対して均一な圧力差ΔP を印加された際の M は以下のように計算できる。(式中の 各部の寸法は図①-(2)-2-1.2a の通り)。

$$M = \begin{cases} \frac{L \cdot \Delta P \left[2L(L+l-x) - L^2 \right]}{2} + \frac{w \cdot \Delta P (l-x)^2}{2} & (0 < x < l) \\ \frac{L \cdot \Delta P (L+l-x)^2}{2} & (l < x < L+l). \end{cases}$$

式①-(2)-2-1.2 を式①-(2)-2-1.1 に代入した結果と、コンデンサの容量 (C) 、電荷 (Q) と電極間電圧 (V)の関係式(Q = CV)から、圧力差ΔPによって発生する電圧が得られる。

$$V = \frac{d_{31}E_{\rm P}Z_{\rm P}\Delta Pw(3lL^3 + 3l^2L^2 + l^3w)}{6\sum_{i}E_{i}\left(\frac{h_{i}^{3}}{12} + h_{i}Z_{i}^{2}\right)} \cdot \frac{1}{C_{\rm P} + C_{\rm others}}$$

ここで、CPと Cothers はそれぞれ、圧電体層および他の成分のコンデンサ容量である。

図①-(2)-2-1.1 圧電素子型カンチレバーのイメージ図

表①-(2)-2-1.1 式①-(2)-2-1.1 における各パラメータの定義

d_{31}	圧電係数
С	コンデンサ容量
E_p , E_i	それぞれの層のヤング率
Z_p, Z_i	各層の中心と曲げ中立面の間の距離
I_i	断面二次モーメント
A_i	各層の断面積

図①-(2)-2-1.2 (a)圧電素子型カンチレバーの設計図 (b)製作プロセス

①-(2)-2-2 圧電素子型カンチレバーの設計

トリガー部の要求仕様として、ドアの開閉などで発生する室内の気圧変化を十分に検出 しうる感度、及び2cm×5cm×2cm内に収まる大きさであることが必要となる。AINカン チレバーのセンサチップ自体は MEMS プロセスによって作製するため、必要なサイズに小 型化するのは比較的容易であるが、十分な感度を得るためにはカンチレバーにある程度の サイズのキャビティを取り付ける必要がある。このキャビティをできるだけ小型化し、前 述のユニットサイズに収める必要がある。

表①-(2)-2-2.1 は、AIN カンチレバーの設計の一例である。この時の各膜厚を表①-(2)-2-2.2 に示す。カンチレバーの寸法は 1500 µm×1000 µm×2 µm であり、圧力が作用する面積を 広く、AIN が形成される根元の部分は応力集中を生じさせるよう狭く設計した。*I*及び w を設計パラメータとして、複数のカンチレバーを試作した。また AIN カンチレバーは Pt/Ti/AIN/Pt/Ti/SiO₂/Si から構成される。ボンディング用の電極には Au 層を用いる。各層 の形成時に応力が残留する可能性があるため、平坦な薄いカンチレバーを作製するために は各層を適切な厚さに設計・制御する必要がある。カンチレバーとその周囲のギャップの 幅は、キャビティへの空気流入による圧力差の緩和速度をできるだけ遅くすることと、装 置の加工精度を考慮し 5 µm とした。このとき、式①-(2)-2-1.3 から、表①-(2)-2-2.1 の設計 のカンチレバーの圧力差に対する感度は 7.0 mV/Pa と計算される。

表(D-(2)-	-2-2.1	カンチ	レバーの	設計値	の一例
	<i>L</i> (μ	m)	1000	<i>h</i> (µm)	2	
	l (µr	n)	250	s (µm)	5	
	w (µ	ım)	500			
表①)- <u>(2)-2</u>	2-2.2 F	YZT カン	/チレバー	−の各膜	<u>〔の</u> 厚さ
	i	材	学		$h_{\rm i}$ (μ m))
	5	Pt/	Гі		0.2	
	4	All	N		0.7	
	3	Pt/	Гі		0.2	
	2	the	rmal SiC	D_2	0.1	
	1	dev	vice Si		1.3	

①-(2)-2-3 圧電素子型カンチレバーの作製

AIN カンチレバーの製作プロセスを図①-(2)-2-1.2b に示す。SOI ウェハ上に Pt/Ti/AIN/Pt/Ti/SiO₂の多層構造を形成し、カンチレバーを作製した。多層構造の形成とし て、始めに SOI ウェハの熱酸化によって SiO₂層を作製し、その上に下部電極用の Pt/Ti 層 をスパッタリングで成膜した。下部電極の成膜後、AIN 層をスパッタリングで成膜し、最 後に上部電極用の Pt/Ti の層を下部電極と同様に成膜した。

カンチレバー形状への加工は、始めに上部電極の Pt/Ti を Ar イオンによってミリングし た。次に、AIN 層をエッチングし、下部電極の Pt/Ti を上部電極と同様にしてミリングした。 SiO2 層をエッチングし、その後 Au 層をスパッタリングで成膜し、パターニングして電極 とした。次にデバイス Si 層と BOX 層のドライエッチングを行い、カンチレバー構造を形 成した。最後に、カンチレバーが可動となるよう、ハンドル Si 層と BOX 層を裏側からエ ッチングした。

試作した AIN カンチレバーが形成されたセンサチップの写真及び断面の SEM 画像を図 ①-(2)-2-3.1 に示す。センサチップの大きさは 3 mm × 5 mm × 0.4 mm となっており、センサ チップ中心にカンチレバーが形成されている。作製したセンサの静電容量は 64 pF であっ た。AIN 層の断面及び表面の TEM 画像(図①-(2)-2-3.2a) に示す通り、試作した AIN 層は柱 状構造を有している。圧電定数 d_{33} と印加電圧を図①-(2)-2-3.2b に示す。この結果から作製 した AIN 薄膜が圧電素子として機能し、圧電係数 d_{33} が-3 pm/V 程度であることが分かる。

図①-(2)-2-3.1 試作した AIN カンチレバーの写真及び SEM 写真

図①-(2)-2-3.2 試作した AIN の(a) TEM 写真及び、(b) 圧電定数 d33 測定結果

①-(2)-2-4 圧電素子型カンチレバーの評価

①-(2)-2-4-1 圧力差に対する応答

試作したカンチレバーの圧力差に対する応答を計測した。実験装置の構成図を図① -(2)-2-4-1.1aに示す。カンチレバーの変形で圧電体に生じた電荷量を電圧信号に変換するた めに、フィードバック電荷容量が 100 pF であるチャージアンプ (SHOWA SOKKI、 MODEL-4035)を通して計測した。試作したカンチレバーは、その上面と下面で圧力差を 発生させることができるよう、2 つの独立したチャンバーと接続した。このうち1 つのチ ャンバーは大気開放、もう1 つのチャンバーはシリンジが取り付けられており、シリンジ でチャンバーへ空気を送ることでカンチレバーの上面と下面との間に圧力差を発生させた。 二つのチャンバー間の圧力差は、市販のダイアフラム型センサにより計測する。このよう な構成で、-20 Pa から 20 Pa の圧力差をカンチレバーに与えた場合の出力電圧を計測した。

図①-(2)-2-4-1.1bに加えた圧力差と出力電荷の関係のグラフを示す。出力電荷は圧力差 に対して線形に応答した。このとき、最小2乗法による近似直線はV(mV) = 6.8 × ΔP (Pa) となった。従って圧力差に対する感度は圧力範囲±20 Pa において 6.8 mV/Pa であると算出 でき、計測した感度は、理論値とほぼ一致した。

図①-(2)-2-4-1.1 (a)差圧特性評価セットアップ (b)印加した圧力差と出力電圧の関係

①-(2)-2-4-2 キャビティサイズを変化させた際の気圧変化に対する応答

試作した AIN カンチレバーをトリガーとして用いるためには、カンチレバー下部に小型 のキャビティを設ける必要がある。このキャビティのサイズの最適値を決めるため、試作 した AIN カンチレバーにキャビティを取り付けた際の気圧変化に対する応答を評価した。 実験には、圧力差応答評価に使用した治具及びチャージアンプと同一のものを用いた。キ ャビティには最大 60 ml で容量可変なシリンジを用いた。また、外部からの圧力印加機構 として、図①-(2)-2-4-2.1a 及び図①-(2)-2-4-2.1b に示すように任意の圧力差を発生させる圧 力校正機及び電磁弁を備えたチャンバー1,2(容量各 1000ml)をセンサチャンバの片側に接 続した。圧力校正機により、2つのチャンバーを異なる圧力にしておき、2つのチャンバー につながる電磁弁を開閉することで、カンチレバーの上下の圧力差を任意の値にステップ 状に変化させることができる。使用した AIN カンチレバーの仕様は、*l*=1000及び w=250、 圧力差に対する感度が 11.5 mV/Pa である。

図①-(2)-2-4-2.2a は容量可変キャビティの容量を 60ml とした際の気圧変化に対する実時 間応答である。出力電圧は、電磁弁の切り替えによって気圧変化をステップ入力した瞬間 に急速に増加し、カンチレバー周囲のギャップを介してキャビティ内に空気が流入するこ とで、カンチレバー上下の圧力差が緩和するにつれ、出力電圧も徐々に減少している。印 加圧力ステップを 2.0~13Pa まで変化させたところ、圧力が大きくなるにつれ応答曲線の ピークが大きくなるが、10Pa 以上ではやや飽和する傾向がみられた。いずれの場合でも、 ノイズレベルは 1mV 以下であった。

次にキャビティ容量とカンチレバーの応答曲線のピーク値の関係を図①-(2)-2-4-2.2b に 示す。チャンバー容量が大きくなると、ピーク値は増加した。キャビティのサイズは、ク リーンルーム内外の気圧差 10Pa が検出可能で、かつできるだけ小型であることが必要とな る。キャビティサイズが 10ml の際のカンチレバーの出力は 10mV 程度であり、十分な S/N 比を有していることがわかる。したがって、トリガー部として適切なキャビティサイズと して 10ml を選定した。

図①-(2)-2-4-2.1 気圧変化に対する応答の特性評価セットアップの

⁽a)写真 (b)模式図

図①-(2)-2-4-2.2 印加した気圧変化と出力電圧の関係

①-(2)-2-5 トリガー部としての評価

試作したカンチレバー型圧力センサをイベントドリブンのためのスイッチとして機能 させるため、図①-(2)-2-5.1a に示す回路を構成し、その動作検証を行った。この回路は、 圧力変化によって生じたカンチレバーからの起電力(電荷)をチャージアンプで電圧に変換 し、後段のコンパレータにてカンチレバーの出力が設定された閾値を越えたかどうかを判 断する。この回路の消費電力は約 2µW であった。図①-(2)-2-5.1b にトリガー部の動作結果 を示す。10Pa 程度の圧力変化を与えた際、カンチレバーの出力がコンパレータで設定した 閾値を越え、コンパレータから Hi 信号が出力されていることが確認できる。以上から、開 発したカンチレバーを用いて低消費電力で圧力変化検出可能なトリガー部の開発に成功し た。

図①-(2)-2-5.1 (a)トリガー部回路図 (b)圧力に対する応答結果

①-(2)-3 塵埃検出部の開発【再委託先:東京大学】

(1)-(2)-3-1 塵埃検出部の設計・製作

本塵埃量センサは、①-(2)-1の目標で述べたようにオフィスルーム、食品工場、精密機 械工場で使用することを想定しており、塵埃検出部にて測定するクリーン度のレベルはク ラス10万とした。表①-(2)-3-1.1 にクリーン度と塵埃の1m³当たりの浮遊量の関係を示す。 クラス 10 万においては 0.5 µm 以上の粒子は 1m³において約 350 万個浮遊している。よっ て、測定対象とする粒子径は0.5~5 µm とする。

塵埃検出部では、ファンモータによって空気を取り込み、その中に含まれる塵埃を光学 素子により検出する構成となっているため、システムの消費電力の目標値である 100μW と するためには、常時駆動することは困難である。そこで、塵埃検出に必要となる最低時間 だけ駆動する間欠駆動とした。加えて、ファンや光学系などが2cm×5cm×2cm内に収ま る大きさであることが必要となる。

上記に記載した目標を達成するために、塵埃検出部として表①-(2)-3-1.2 に示す仕様を設 定した。トリガー部及び他のシステムの消費電力がを 10μW と仮定すると、 塵埃検出部の消 費電力が 90 mW であれば、1000 秒に 1 回、1 秒間の駆動によって平均消費電力 100μW が実 現できる。

塵埃検出部はLD(レーザダイオード)、PD(フォトダイオード)、LD及びPD用の集 光レンズ、小型ファンの4点から構成され、これらを外部からの光が入り込まない筐体内 に配置する(図①-(2)-3-1.1)。 塵埃を含む空気は、小型ファンによって LD と PD の光路に直 交して設置された流露へと導入される。LD から発せられた光は、レンズによって流路の 中央部に集光される。ここを空気中の粒子(塵埃)が通過すると光が散乱され。散乱光は同 様にレンズを通して PD へと導かれ、粒子サイズに応じた強度の電気信号として検出する

43

ことができる。粒子サイズが直径数μmである粒子の場合、LD と PD の 2 つの成す角度が 大きければ大きいほど散乱光強度は強くなる¹⁰⁾。ただし、LD から PD に直接到達する光も 角度が増加するにつれて強くなるため、角度を大きくしすぎると、逆に S/N 比が低下する。 本研究開発では、LD と PD との間の角度を S/N が最も高い角度となる 120°で設計した。

JIS ISO F.S 209D Class 0.1 µm 0.5 µm 1 μm 5 µm 100,000 Class 5 100 3,520 832 29 Class 6 1,000,000 293 1,000 35,200 8,320 Class 7 10,000 352,000 83,200 2,930 29,300 Class 8 100,000 3,520,000 832,000 Class 9 1,000,000 35,200,000 8,320,000 293,000

表①-(2)-3-1.1 クリーン度と塵埃の1m³当たりの浮遊量

表①-(2)-3-1.2 提案する塵埃検出部の仕様

クラス 10 万における塵埃検出数	50 個/s
消費電力	90mW 以下
サイズ	$2 \text{ cm} \times 5 \text{ cm} \times 2 \text{ cm}$

図①-(2)-3-1.1 塵埃検出部の構造

PD の検出回路を図①-(2)-3-1.2 に示す。LD は、京セラ製の垂直共振器型発光レーザ(850 nm VCSEL KLD085VC)を、PD は浜松ホトニクス社製の Si PIN フォトダイオード(S6775-01) をそれぞれ用いた。レンズには、直径 6 mm、焦点距離 6.4 mm のシグマ光機の球面両凸レンズ(BK7 SLB-05B-06P)を用いた。ファンモータは、小型で 5V 以下の電圧供給により 駆動できるものとして、COPAL 社製の F16EA を選定した(16 mm 角サイズ)。LD、PD 及びレンズは Stratasys 社製の 3D プリンタ (EDEN250 または EDEN260V)で流路が一体化した 樹脂構造体を作製し、所定の配置に設置した(図①-(2)-3-1.3)。光の反射、透過を防止するために作製した樹脂構造体には黒体材料を塗布した。流路の直径はファンモータの直径 と同一となる 16 mm とした。ファンモータの回転数から、流路に流れる空気の総流量は 1.8×10⁴ m³/s であり、クラス 10 万の場合、0.5 µm 以上の粒子が 1 秒間に約 600 個流れるこ

ととなる。このとき集光した光のスポット部分に入る粒子が全粒子の 1/10 程度と仮定する と約 60 個が 1 秒間に検出される。以上の構成とした場合、塵埃検出部の駆動電圧は 3V と すると、塵埃検出部での消費電力は 81 mW となる(表①-(2) -3-1.3)。

図①-(2)-3-1.2 塵埃検出部の回路図

図①-(2)-3-1.3 試作した塵埃検出部

表①-(2)	-3-1.3	各素子の消費電流及	、び各性能

LD	消費電流	7 mA
PD	逆電圧	2.3 V
モータ	消費電流	20 mA
	体積流量	1.8×10 ⁻⁴ m ³ /s

①-(2)-3-2 塵埃検出部の評価

試作した塵埃検出部を 1000 mm×750 mm×750 mmのアクリルチャンバ内に配置し、塵 埃検出部単体での性能評価を実施した(図①-(2)-3-2.1)。評価用粒子はチャンバーの上面 にはフィルタを介して外気をダウンフローで送るファンが付いており、チャンバー内のク リーン度をコントロールすることができる。評価用粒子として 2 µm 、5 µm 、35 µm の 3 つの粒子径を持つ粒子を用い、塵埃発生器(RGB-1000、PALAS)でチャンバー内に分散 させた。その時のチャンバー内のクリーン度は、市販のパーティクルカウンタ(リオン、 KR-11A)でも同時に計測した。

2 µm の粒子での散乱光を PD で検出した際の応答を図①-(2)-3-2.2a に示す。同様に直径 5 µm 及び 35 µm についても応答を測定し、応答曲線の最大値を粒子の散乱光の出力電圧と

して定義し、粒子径と出力電圧の関係を求めた(図①-(2)-3-2.2b)。

図において、出力電圧は粒子サイズに依存して増大することが確認でき、これを外挿し て粒子径 0.5 µm の場合の出力電圧を求めると、およそ 10mV となる。測定系のノイズレベ ルが約 5mV であることから、粒子径 0.5 µm を十分検出できる。したがって、試作した塵 埃検出部は粒子径 0.5~5 µm の塵埃を検出できることが示された。

次に試作した塵埃検出部を用いてクリーン度と検出素子が単位時間あたりに検出する 粒子の個数の関係について検討した。0.5~5 µm の粒径のおおよその中央値である 2 µm の フライアッシュを用いて、クリーン度を 5000 から 2,000,000 まで変化させた。検出される パルス応答の数が一定になるように、クリーン度に応じて 200~0.5 秒の測定時間範囲で計 測を行った。出力電圧が 10~50 mV のパルスを 2 µm 粒子が検出されたとみなし、パルス 数(塵埃検出頻度)とクリーン度の関係を求めた(図①-(2)-3-2.3)。両者は理論通りほぼ比例関 係にあることが確認でき、その関係式は最小二乗法により

 $N = 57 \times 10^{-5} \times \text{Class}$

式(1)-(2)-3-2-1

と求められた。すなわち本塵埃検出部を用いた場合、クリーン度クラス 10 万では 0.5 µm 以上の粒子が 1 秒間に約 60 個検出されることとなる。以上のことから、試作した塵埃検出 部は、設定した仕様を満たすことを確認した。

図①-(2)-3-2.1 実験セットアップ

図①-(2)-3-2.2 (a)直径 2 µm の粒子に対する応答 (b)粒子の直径と出力電圧の関係

図①-(2)-3-2.3 クリーン度と塵埃検出頻度の関係

①-(2)-4 トリガー部と塵埃検出部の連動

本研究で開発したトリガー及び塵埃検出部を一体化し、自立電源及び無線回路を搭載し た塵埃量センサ端末を試作した。試作した塵埃量センサ端末の構成を図①-(2)-4.1 及び図① -(2)-4.2 に示す。本研究では構成要素が異なる2種類(A,B)の試作を行ったが(表①-(2)-4.1、 図①-(2)-4.3b)、トリガー部及び塵埃検出部は同一性能である。端末全体のサイズは、端末 Aが2.3 cm×5.3 cm×3.9 cm、端末 Bが23.0 cm×5.4 cm×4.5 cmとなっている。センサ部 のサイズは、図①-(2)-4.3a に示す通り、2 cm×5 cm×2 cmとなっておりプロジェクト基本 計画で設定された目標を達成した。

図①-(2)-4.1 試作した塵埃量センサの回路ブロック図(端末 A)

図①-(2)-4.2 試作した塵埃量センサの回路ブロック図(端末 B)

表①-(2)-4.1	試作し	、た塵埃:	量セン	サの	特徴
------------	-----	-------	-----	----	----

	端末 A	端末 B
電源	プロジェクト開発品	プロジェクト開発品
	3V 太陽電池	1.8V 太陽電池
電 源	市販品	プロジェクト開発品
回路	レギュレータのみ	エネルギーマネジメント回路
無線	市販品	プロジェクト開発品
回路	ZigBee 2.4GHz 双方	独自プロトコル 315MHz 単方
部	向通信	向通信

(a)

(b)

図①-(2)-4.3 試作した塵埃量センサの(a)センサ部及び(b)端末写真(端末 A)

図①-(2)-4.4 に試作した塵埃量センサの動作フローを示す。トリガー部が気圧変化を検知 すると、トリガー部からの起動信号により MCU がアクティブ化し、塵埃検出部を1 sec 動 作させる。塵埃検出部の動作が終了し、取得データを無線で送信した後、再度 MCU はス リープ状態になる。また、消費電力を下げるため、外部タイマーで1度測定を実行すると、 測定終了後一定時間トリガーを受け付けない期間 (1024 sec) を設定している。試作した端 末の消費電力を表①-(2)-4.2 に示す。常時駆動しているトリガー部は端末 A で 4µW、端末 B で 2µW 程度と非常に低消費電力を実現している。塵埃検出部は動作時の消費電力が約80mW だが、待機時は0となっている。このため、時間当たりで平均化すると、消費電力は端末Bで96µWとなり、基本計画で設定した平均消費電力100µW以下を達成している。端末Aでは、市販のMCU・無線一体回路部での電力消費が大きいため108µWとなっているが、組み込まれた電源の発電量である150µWを十分下回っており自立型センサとして利用可能である。

_ おい井端主動作フロ	
 [●] [●] [●] [●] [●] [●] [●]	③測定終了、 センサ部 OFF 、
1 ⑤タイマカウント終了、 ← ④マイコン sleep 、 トリガー信号スタンバイ ← タイマカウント ←	塵攻アータ無緑达信

図①-(2)-4.4 塵埃量センサの動作フロー

表①-(2)-4.2 塵埃量センサの消費電力

端		トリ	塵埃	電源	MCU	無線回	合計	平均消費電力
末		ガー	検出部	回路		路(※1)		(※2)
А	動作時	$4 \ \mu W$	81 mW	$2 \ \mu W$	24 mW	75 μW	105.1 mW	108 µW
	待機時	4 μW	0 W	$2 \ \mu W$	0.3 µW	0 W	5.8 μW	
В	動作時	2 µW	81 mW	10 µW	4 mW	3.8 µW	85 mW	96 µW
	待機時	$2 \ \mu W$	0 W	10 µW	1 µW	0W	13 µW	

※1 端末AはMCU・無線回路が一体

※2 1024sec 間隔動作換算

①-(2)-5 精密部品工場での実証実験

試作した端末の機能検証及び無線センサネットワークを利用した省エネ効果を確認す るため、自社の精密部品工場(クリーンルーム)で実証実験を行った。表①-(2)-5.1 に実証実 験実施場所の基本情報を、また図①-(2)-5.1 に市販の塵埃量センサで測定した1日の塵埃量 推移の代表例を示す。今回の実証実験場所は設定クラスが10万であるが、実際はほとんど の時間でクラス1万以下に維持されていることがわかる。就業時間帯である8時から20 時ごろまでは塵埃量が比較的多いが、これは室内の作業人員増加と、人の移動の発生に伴 うものと考えられる。さらに昼13時30頃に塵埃量が大きく増加しているが、これはこの 時間帯にクリーンルーム内の清掃を定期的に行っているためである。いずれの場合も塵埃 量が増加しているものの、依然としてクラス10万を大きく下回っており、空調のエネルギ ー削減の余地があると考えられる。

工場詳細	水晶振動子加工(质	戈膜)エリア
部屋の面積	210 m ²	
設定塵埃クラス	10 万個/cf	
空調風量	594 m ³ /min	
消費電力	67.5 kW	
人数(※)	4 人	8:00-2000
	1人	20:00-8:00

表①-(2)-5.1 自社精密部品工場の基本情報

図①-(2)-5.11日の代表的な塵埃量推移

①-(2)-5-1 試作した塵埃量センサの動作検証

試作した塵埃量センサが工場の現場で実際に利用可能かどうかを検証するため、クリーンルーム内に塵埃量センサを設置し、短期及び長期動作データの取得を行った。実験には 塵埃量センサ端末 A を用いた。

図①-(2)-5-1.1 に塵埃量センサの一日の動作結果を示す。図中の点はトリガー部が圧力変 化を検出し、実際に塵埃量の測定が行われたタイミングである。図からわかるように、作 業員が少ない夜間はほとんどトリガー部が反応せず塵埃量センサが動作していない。これ に対し、昼間はほぼ等間隔(設定したスリープ時間間隔)で塵埃検出部が動作している。こ れらから、トリガー部塵埃の発生要因となる人の動きに関連した圧力変化を検出して塵埃 検出部を動作させる、イベントドリブン動作ができていることが確認できた。一方、塵埃 個数については、実証実験場所の実際のクリーン度がセンサの検出下限であるクラス 10 万を大きく下回っているため測定精度は十分ではないが、塵埃量が大きく変化するタイミ ングでは試作した塵埃量センサでも塵埃を検出できている。

次に、塵埃量センサを長期間連続して稼働させた場合の測定データを図①-(2)-5-1.2 に示

す。図は平成26年10月1日から11月30日までの測定データを示しており、2か月にわたり塵埃量センサがイベントドリブンで動作し続けていることが確認できる。11月2日~ 4日は工場が操業を休止しており照明も消灯しているためセンサは動作していないが、4 日以降に工場が再稼働すると、センサも再度動作を開始している。ここで使用した塵埃量 センサは内蔵した通り太陽電池で動作しており、この結果から長期間、完全に自立して塵 埃量のモニタリングが行えることが示された。

図①-(2)-5-1.1 試作した塵埃量センサにおける1日の塵埃量取得結果

図①-(2)-5-1.2 試作した塵埃量センサにおける塵埃量長期取得結果

①-(2)-5-2 省エネ効果実証

前述のとおり、実証実験を実施した精密部品工場では、塵埃量設定クラス 10 万に対し 常時1万以下に維持されており、空調が過剰に働いている状態となっている。特に夜間は 作業員人数も少ないため無駄なエネルギー消費が大きい。試作した塵埃量センサでの測定 結果に基づき空調を制御することで空調省エネ効果10%以上を達成できるかどうかを検討 した。

①-(2)-5-2-1 空調出力試算検討

実証実験場所である栃木工場の基本情報は表①-(2)-5.1 及び図①-(2)-5.1 で示す通りであ る。塵埃量センサでの測定結果に応じて、空調の出力を断続的に落とすことができれば、 クラス 10 万以下を維持しつつ空調の消費電力を下げられる。なお、本工場は 24 時間稼働 で製品生産を行っているため、品質管理上の制約から実際に空調制御は行わず、空調出力 を変化させた場合の塵埃量を試算することで省エネ効果を確認した。

空調強度と塵埃量の試算には以下の式を用いた¹¹⁾。ここで、換気回数とは風量を部屋体 積で規格化したものである。この値を変化させることで空調強度と塵埃量の関係を把握す ることができる。

$$N = \frac{MKS(1-a) + \frac{60}{V}G}{K[1-(1-S)(1-a)]}$$

式①-(2)-5-2-1-1

N:塵埃濃度(個/cf)

- M: 外気の塵埃濃度(個/cf)
- V: クリーンルームの体積(m³)
- K: 換気回数(回/時)
- G: クリーンルーム内での塵埃発生量(個/分)

a:フィルタの集塵率

S: 外気量と全風量の比

まず、現在の空調出力における室内の塵埃量を算出した。各パラメータは現在の実証実 験場所の状況の状況に基づき K=33、M=1,000,000、a=0.9、S=0.2 とし、さらに内部塵埃発 生量は先行文献を参考に G=300,000 とした¹²⁾。その結果、塵埃濃度 N=7000 となり、実測 値に近い値が得られた。

次に、空調出力をセンサの測定結果に応じて適切に制御した場合の塵埃量を求めた。空 調の出力を変化させるタイミングは、人の動きと連動していることが重要である。そこで、 試作した塵埃量センサの測定タイミングに合わせ、空調出力を変えることとする。

①-(2)-5-2-2 空調出力試算結果

今回の試算では、以下のような条件で一日の塵埃量を試算した。

- ・試作した塵埃量センサの動作タイミングで空調強度を変更
- ・塵埃量計算値が 30,000 以上の場合、換気回数 33 回となる出力で空調を運転
- ・塵埃量計算値が30,000以下の場合、換気回数6回となる出力で空調を運転

計算した結果を図①-(2)-5-2-2.1 に示す。図において、赤のラインが塵埃量の実測データで あり、緑のラインが空調を適切な出力で運転した場合の塵埃量の推定値である。図の上部 に示した点は工場内に設置した塵埃量センサが実際に動作したタイミングであり、このタ イミングで塵埃量の推定値が基準を超えていたかどうかを判断し、空調の出力を切り替え ている。色つきの領域は換気回数 33 回で、その他の領域が換気回数 6 回で稼働している部 分である。図に示す通り、夜間を含め、多くの時間帯において換気回数 6 回で運転して問 題ないことがわかる。集計すると、換気回数 33 回での稼働時間は約 5 時間、換気回数 6 回での稼働時間は約 19 時間となり、現状の 24 時間換気回数 33 回で運転する場合の約 35% に空調消費電力を削減できることになる(換気回数に消費電力が単純に比例すると想定)。

図①-(2)-5-2-2.1 トリガータイミングを基にして空調出力を変化させた時の 塵埃量試算結果

同様の試算を10月から12月までの3か月間の実測データに対して行い、空調消費電力 削減値の平均値を月ごとに求めた(表①-(2)-5-2-2.1)。月ごとの平均値は、装置搬入や著しい 外気の影響(野焼きによる大幅な外気塵埃量の増加等)で定常とは異なる塵埃量変化がある

日は除外して算出している。表より、3か月の平均で約67%と目標の10%を大きく超え る空調消費電力の削減が可能であることがわかった。すなわち、イベントドリブン駆動で 塵埃量を測定し、その結果を空調の制御に活用することは、空調の消費電力削減に大きく 寄与することを確認できた。

表①-(2)-5-2-2.1 削減値試算結果の月ごとの平均値

	10 月	11 月	12 月	
空調消費電力削減率	-63.8%	-59.2%	-79.2%	

①-(2)-6 まとめ

精密部品工場の省エネ化を目的とし、無線センサネットワークに適用できる小型・低消 費電力な塵埃量センサの開発を行った。塵埃量の変化の大きな原因である人の動きに伴う 圧力変化が起こったときのみ動作するイベントドリブン型とすることで塵埃量センサの低 消費電力化を達成した。

トリガー部は、圧電体(AIN)を用いて Si 薄膜カンチレバーの変形を検出する構成とする ことで、圧力変化検出に必要な電力を0にできた。同時にクリーンルーム入りロドア開閉 で発生する 10Pa の圧力変化を検出できることを確認した。

塵埃量検出部の小型化では、レーザダイオード、フォトダイオード、集光レンズ、小型 ファンを 3D プリンタで作製した流路一体型の樹脂構造体に配置する構成とすることで、 塵埃検出部のサイズを目標である 2cm×5cm×2cm 以下とすることができた。試作した塵 埃検出部は、クラス 5,000~2,000,000 の環境下で、塵埃量 N = 57×10⁻⁵×Class の検出感度 が得られており、精密部品工場の一般的なクリーン度であるクラス 10 万で利用可能である ことを確認した。

塵埃量センサの試作では、開発したトリガー部及び小型塵埃検出部を一体化し、センサ 部サイズを 2cm×5cm×2cm に収めることができた。また、無線機能及び自立電源付加した 塵埃量センサの平均消費電力 96μW であった。いずれも基本計画で設定した目標値である センサ面積 2cm×5cm 以下、平均消費電力 100μW 以下を達成した。

開発した塵埃量センサを自社の精密部品工場(クラス10万のクリーンルーム)内に設置し、 動作試験を行ったところ、夜間等の作業人員が少なくなる時間で塵埃量センサの動作頻度 が減少し、就業時間帯では測定頻度が増加するイベントドリブン駆動ができていることを 確認した。また、こうしたイベントドリブンによる間欠駆動とすることで、センサに内蔵 した自立電源で2か月以上の長期間にわたって塵埃量の測定、測定データの無線送信が可 能であることを確認した。

最終的に開発した塵埃量センサを用いた場合の精密部品工場の空笑の省エネ効果を試算した。塵埃量測定結果に応じて空調の運転出力を適切に制御することで、定常時では1 か月平均で約67%の空調消費電力が削減可能であることが確認できた。

以上のことから、本研究で開発したイベントドリブン型塵埃量センサは、外部との配線 が不要で長期間の塵埃量の測定と測定データの送信が可能であり、無線センサネットワー クを構成することで、精密部品工場内の局所的な塵埃量の見える化を容易に実現できる。 そして、そのセンサの情報に基づいて空調の最適制御を行うことで精密部品工場の大幅な 省エネが実現することが期待される。

①-(2)-7 参考文献

 Nguyen Minh-Dung, Hidetoshi Takahashi, Takeshi Uchiyama, Kiyoshi Matsumoto and Isao Shimoyama : "A barometric pressure sensor based on the air-gap scale effect in a cantilever," Applied physics letter, vol. 103, issue 14, pp.143505-4, 2013.

2) Hidetoshi Takahashi, Nguyen Minh Dung, Kiyoshi Matsumoto and Isao Shimoyama : "Differential pressure sensor using a piezoresistive cantilever," Journal of Micromechanics and Microengineering, vol. 22, no. 5, article no. 055015, 2012.

3) V. Cimalla, J. Pezoldt, and O. Ambacher : "Group III nitride and SiC based MEMS and NEMS: materials properties, technology and applications," Journal of Physics D: Applied Physics, vol. 40, no. 20, pp.6386–6434, Oct. 2007.

4) M.-A. Dubois and P. Muralt : "Properties of aluminum nitride thin films for piezoelectric transducers and microwave filter applications," Applied Physics Letters, vol. 74, no. 20, p. 3032, May 1999.

5) J. Makynen, J. Hakulinen, T. Kivisto, and M. Lehtimaki, : "Optical-Particle Counters - Response, Resolution and Counting Efficiency," Journal of Aerosol Science, vol. 13, pp. 529-535, 1982.

6) T. Allen : "Particle Size Measurement: Volume 1 Powder Sampling and Particle Size Measurement 5th edn.," New York: Springer, 1996.

7) J. Binnig, J. Meyer, and G. Kasper: "Calibration of an optical particle counter to provide PM2.5 mass for well-defined particle materials," Journal of Aerosol Science, vol. 38, pp. 325-332, Mar 2007.

8) Zou Qiang, Tan Wei, Kim Eun Sok, and Gerald E. Loeb : "Single- and Triaxis Piezoelectric-Bimorph Accelerometers," Journal of Microelectromechanical Systems, vol. 17, pp. 45-57, 2008.

9) Yutaka Tomimatsu, Hidetoshi Takahashi, Kenta Kuwana, Takeshi Kobayashi, Kiyoshi Matsumoto, Isao Shimoyama, Toshihiro Itoh and Ryutaro Maeda, : "A piezoelectric flow sensor for use as a wake-up switch for a wireless sensor network node," Mechatronics, vol. 23, no. 7, pp. 893-897, 2013.

10) A. Isozaki, K. Kuwana, Y. Tomimatsu, and T. Itoh, : "Photodiode with micro texture for improving sensitivity at large angle of incidence for particle sensors," Proceedings of

TRANSDUCERS2011, pp. 2050-2053, 2011.

- 11) 安藤文蔵、平沢紘介:"日立総論," vol.50, no.5, pp.422-426, 1968.
- 12) 柴田昭太郎:"日立総論," vol.65, no.7, pp.457-460, 1983.

①-(3) CO2濃度センサの開発【オムロン(株)、(再委託先:東京大学)】

①-(3)-1 研究開発の背景と目標

<研究開発の背景>

近年、オフィスオフィスビル、製造現場、大規模店舗等において、地球温暖化抑制によ る省エネへの取り組みや、快適な室内環境の維持確保などへの関心が高い。オフィスビル や製造現場、大規模店舗で省電力化や快適な室内環境の維持を進めていくためには、室内 環境の状態を適宜的確に把握し、不在時あるいは不在箇所の空調機のエネルギーを落とす ことが有効な手段である。

また、ビル衛生管理法において二酸化炭素(CO₂)濃度を 1000ppm 以下にする基準が定 められており、換気が義務付けられている。また、業務の効率面でも CO₂濃度が高くなら ないように換気制御を行うことが望ましい。一方、過剰換気はエネルギーのロスとなるた め、CO₂濃度をモニタして必要最小限の換気を保つことが省エネルギー化にとって重要と なる。

現状の CO₂センサは、CO₂が赤外線の特定波長を吸収する原理を用いた NDIR 方式(非分 散型赤外分光法)と、CO₂ガスと固体電解質(ファインセラミックス)の化学反応を利用した 電池型の 2 種類がある。図①-(3)-1.1 に既存 CO₂センサを示す。※これらは従来の CO₂セ ンサの中では比較的、消費電力は小さく、サイズは小型である。

しかしながら、NDIR 方式は、赤外線を吸収するための光路長および光源が必要であり、 電池型は電解質であるファインセラミックスの室温での電導度が低く、ヒーターによる加 温(約 400℃)が必要であるため、①消費電力が大きい ②サイズが大きい ③光源や電池の 寿命があるなど、両者ともに課題がある。そこで、本稿ではこれらの課題を解決する新た なセンシング方法について説明する。

本稿では本プロジェクトで複数企業と共に検討している中小オフィス向けの省エネ情報システムの中の **CO**2 センサの取り組みの成果について報告する。

<既存センサ端末での課題>

上述した既存の CO₂センサ、NDIR 式および固体電解質式で、無線センサ端末を組んだ 場合、消費電力の大きさから、蛍光灯を利用した蓄電発電で、CO₂ 濃度のモニタリングは 困難である。理由は、既存の CO₂センサでは、光源やヒーターを用いているため、非常に 消費電力が大きいため、無線端末化でのモニタリングが困難なためである。よってスマー トオフィスでのガスモニタリング用途において、空調システムでの換気制御ができず、無 人でも一定期間で強制的に換気してしまい、無駄なエネルギーの浪費をしてしまう。

図①-(3)-1.1 既存 CO2 センサ例

(左:フィガロ技研製 固体電解質型 CO₂センサ、 右:GSS 社製 NDIR 式 CO₂センサ)

<解決策として>

よって本プロジェクトで、省エネ 10%削減を行なうにあたり、発電蓄電で賄えるセンサ の開発が必要となる。本テーマでは、150µWの蓄電発電し、センサには 100µW、無線機 に 50µW供与可能なセンサ端末(グリーンセンサ端末)の開発を行なう。つまりセンサにお いては、100µW駆動(待機電力を含む)のセンサが必要となる。既存の CO2 センサの消費 電力はセンシング頻度にもよるが、小型低消費タイプの NDIR 式センサで、センシング時 は 50~100mW、1s の間欠駆動で数 mW 駆動の電力を要する。平均消費電力 100µW を達 成するためには、大幅な消費電力低下が必要となる。我々は、既存のセンシング方式の改 良ではなく、新しいセンシング方式を導入して、超低消費電力センサの開発に着手した。

我々は CO₂ ガスを特異的に吸着するイオン液体に着目した。※イオン液体の特徴や性質 については、①-(3)-2.1 に記載する。イオン液体をセンサの反応部し、センシング条件の最 適化や詳細設計を行なった。

イオン液体を用いた CO₂ センサの特徴は、光源や光路長、ヒーターを用いないことと、 ガス吸着による電気特性の変化を利用して濃度換算することである。従来の CO₂濃度セン サと比べて、開発の CO₂センサは、i)低消費電力、ii)小型化、iii)高速応答、iv)低コ ストが可能と考える。このセンサのポイントは、簡易な測定方法(後述するインピーダンス 法を利用)でかつ、小型・低背化な構造である。イオン液体は通常液体状態であるので、我々 はイオン液体を固体化し、それに液漏れ防止の対策を行なった。また MEMS (Micro Electro Mechanical System)技術を用いた微細加工で電極パターニングを行ない、小型センサを製作 した。 <研究開発の目標>

CO2濃度センサの目標として、以下の数値目標を設定した。

- ・測定範囲 300~3000 p p m
- ・分解能、誤差 ±100 p p m
- ・使用環境温度 5~45℃
- ・センササイズ 1cm×1cm以内
- ・用途 中小オフィスビルの会議室 (ビル管理法)

①-(3)-2 CO2 濃度センサの設計・開発

①-(3)-2-1 イオン液体について

<イオン液体について>

本テーマで用いるイオン液体は以下の特性を持つことが知られている。図①-(3)-2-1.1 にイオン液体の写真を示す。

- ・イオン(カチオン、アニオン)のみで存在。(溶媒は存在しない)
- ・導電性が高い。
- ・安定性が高い。(温湿度、電気的、化学的)
- ・融点、沸点が高い。(300℃以上のものが多い)
- ・粘性が比較的低い。
- ・難揮発性である。 (常温常圧下で真空にしても揮発しない)

上述の特長より、近年、イオン液体に関して様々な研究がなされ、産学および企業から の研究が盛んに行なわれている。特に 2000 年以降は多くのイオン液体に特化した学会や論 文が多く発表され、また特許の出願件数も非常に多くなっており、新しいニューマテリア ルとして注目されてきた。

その一例としては、電気化学デバイス(リチウムイオン二次電池や電気二重層キャパシ タ)の電解質などの分野では、基礎研究から製品化への検討が進められている。しかしなが ら商業的な規模までには至っておらず、また製品価格も非常に高いため、イオン液体の普 及までには課題が多いと言わざるを得ない。

今後のイオン液体の展望として、イオン液体の特長を活かし、宇宙開発分野(真空下でも 揮発しない性質を利用)、ナノテク分野のナノ粒子の保護剤(イオン液体中のナノ粒子はイ オン液体自体が安定化剤として作用する性質を利用)、ある特定の高分子を溶解できるイオ ン液体の応用(例えば、イオン液体のセルロース可溶化を利用)で廃棄されていたバイオマ スなどに利用、糖やアルコールの分解に関する環境的な研究やエネルギー問題への応用が 期待される。 それとは別に特に注目されているのが、イオン液体が特異的に CO₂を吸着する性質である。吸着方法などの原理については、未開な部分があるものの、この性質を用いて、大気中から CO₂のみを分離する技術や貯蔵技術の研究がされている¹⁾。

図①-(3)-2-1.1 イオン液体の写真 (東洋合成工業製)

我々はイオン液体が CO₂に吸着する性質を利用して、ガスセンサの開発を試みた。本テ ーマで用いたイオン液体は、ethyl-methyl-imidazolium (EMIMBF₄)、ethyl-methyl-imidazolium (EMIMTFSI)である。陽イオン(カチオン)は五員環構造をベースとしたイミダゾリウム系を、 陰イオン(アニオン)はフッ化ホウ素やビス(トリフルオロメタンスルフォニル)イミドであ る。

大気中の CO₂の溶解度はイオン液体の種類、すなわちカチオンとアニオンの種類に大き く依存する。種々の論文では、イオン液体が CO₂ を吸着する構造として 、カチオンがイ ミダゾリウム系を採用し、アニオンに関しては、疎水性および親水性と幅広く探索されて いる。一般的に、CO₂ の溶解度は[NTf2]⁻と[CTf₃]⁻が高く、PF₆⁻、[OTf]⁻、BF₄⁻、[DCA]⁻の順 に低くなり、NO₃⁻がもっとも低い。フッ素系アニオンは CO₂の溶解度を大きく増加させる。 この原因は、フッ素系アニオンが CO₂ と弱いルイス酸・塩基相互作用を形成するためと考 えられている。 一方、カチオン側からみると、イミダゾリウムカチオンのアルキル側鎖を伸長すると CO₂ の溶解度は増加するが、その量はごく僅かである。よって CO₂溶解度を向上させることに おいては、カチオンの効果はアニオンの効果と比べ小さいので、アニオンの選択性が非常 に重要であることがいえる。現在、多くの研究者が CO₂溶解度の向上を目指して、新規の イオン液体の開発やアニオンカチオンの組み合わせの検討がされている。

イオン液体のガス選択性は、CO₂以外のガスについても溶解度をみる必要がある。ガス の溶解度のひとつの指標として、「ヘンリーの法則」が重要となる。ヘンリーの法則とは、 気体に関する法則で、「揮発性の溶質を含む希薄溶液が気相と平衡にあるときは、気相内 の溶質の分圧は溶液中の濃度に比例する」と定義される。各ガスについてはヘンリー定数 が算出され、ヘンリーの法則の気体の圧力と溶解量の関係が吸着量にも成立すると考えら れている。ヘンリー定数が大きいほど、ガスは溶解しにくい傾向がある。溶解しやすいガ スの特徴としては、分子の構造が幾何学的でないガス、例えば、SO₂や N₂O などのガスは N₂や H₂、O₂と比べ、非常に溶解しやすいことがわかる。CO₂においても、大気中に多く 存在する N₂や O₂と比べ、溶解しやすいことがわかる²⁾。

イオン液体を使ったガスの吸収を応用した例として、産総研・金久保らが行なった研究 がある。金久保らは、イオン液体とアルコールを混合したハイブリッド溶液を用いて、混 合ガス中の CO₂を吸収する精製方法を開発し、CO₂のみを優先的に吸着・貯蔵するシステ ムを考案している。ただしリバーシブル反応ではなく、高温高圧化で有効であるので、常 温常圧下かつリバーシブル(吸着および脱離)に使用する用途では不向きといえる³⁾。

今回が提唱するイオン液体を用いた CO₂センサは、常温常圧下でかつリバーシブル、且 つ小型・低消費電力なデバイスの開発を行なう。上述のイオン液体の特徴を活かして、新 しいガスセンサの開発に取り組んだ。

イオン液体の CO₂吸着を利用して、従来の CO₂センサと比べ、低消費電力(従来比より 1/100)・小型(センササイズ 10mm×10mm)・長寿命・低コストな CO₂センサの開発に取り組 んだ⁴⁾⁻⁷⁾。

図①-(3)-2-1.2 に我々の開発中の CO₂センサの概略図を示す。電極基板は MEMS 技術を 用いてガラス基板または Si 基板上に電極部を形成した。中央部にイオン液体を実装し、液 漏れ防止のため、ガス透過膜でカバーした。

61

図①-(3)-2-1.2 イオン液体センサの外形図

①-(3)-2-2 電極部の設計【再委託先:東京大学】

本節では、イオン液体が吸収した二酸化炭素ガスの濃度を計測するための電気化学計測用の電極部の設計について説明する。

イオン液体のインピーダンスを計測するための電極基板を製作するにあたり電極素材 の選定を行った。電極素材選定のために、炭素電極、アルミ電極、銅電極、銀電極、金電 極、白金電極、チタン電極を準備し、それぞれの電極についてサイクリックボルタンメト リー計測を行い比較した結果、電極素材としては白金を用いることとした。図①-(3)-2-2.1 に白金電極を使用した際のサイクリックボルタモグラムである。黒線と青線が、CO2 濃度 0%、赤線が CO2 濃度 3000ppm の時のものである。CO2の濃度向上に伴い、ボルタモグラ ムの形状が変化し、再び CO2 濃度 0ppm にするとイニシャルの状態に復元されていること が分かる。

次に電極の形状について述べる。図①-(3)-2-2.2 に電極形状の概要を示す。左右の凸型 の二つの電極は電極間距離 200μm で対向している対向電極であり、その電極間をまたがる ように滴下されたイオン液体のインピーダンスを計測するためのものである。また、イオ ン液体は温度によってもインピーダンスが変化することが分かっており、温度補償を実施 するためにイオン液体の温度計測用の抵抗線を、インピーダンス計測用の対向電極の間に 形成した。また、イオン液体の形状を再現性良く形成するために、疎水性膜であるサイト ップをパターニングし、滴下した際のイオン液体が直径 2 mm の円のパターンとなるよう にした。イオン液体の体積は、2μL とする。電極の材質は前述のように、白金を使用し、 ガラス基板との密着層としてチタンを用いた。図①-(3)-2-2.3 に、電極パターンおよび、液 体保持のためのサイトップのパターンを重畳表示したマスクデザインを示す。なお、図内 の数値の単位はすべてμm (マイクロメートル) である。また、図①-(3)-2-2.4 に実際に作 製した、白金電極上にイオン液体を滴下した際の様子を示す。

次に、製作した白金電極基板を用いて、イオン液体の温度と基板上に作成したイオン液体温度計測用抵抗線の抵抗との関係を調べた。実験は恒温恒湿漕(エスペック社、小型環境試験機 SH-222)を使用し実施した。図①-(3)-2-2.5に温度と電極の抵抗の関係を示す。

62

結果として、外気湿度に依存せず、温度と抵抗線の抵抗は比例の関係があることが分かった。

図①-(3)-2-2.1 白金電極を使用した際の、イオン液体のサイクリックボルタモグラム

図①-(3)-2-2.2 白金電極基板の形状および機能

図①-(3)-2-2.3 白金電極基板パターン図

図①-(3)-2-2.4 製作した白金電極基板およびイオン液体を滴下した様子

図①-(3)-2-2.5 白金電極基板上に形成した温度計測用抵抗線の抵抗と温度との関係

また、イオン液体のインピーダンスが、温度や湿度に対しても変化するため、温度補償、 湿度補償のために、温度に対するインピーダンス変化、湿度に対するインピーダンス変化 の計測を行った。温度を固定して湿度を変化させた時の、イオン液体のインピーダンスの 変化について計測を行った結果を図①-(3)-2-2.6 左に、湿度を固定して温度を変化させた時 の、イオン液体のインピーダンスの変化について計測を行った結果を図①-(3)-2-2.6 右に示 す。いずれの場合も、温度や湿度に対してインピーダンスが線形に変化しているため、比 例係数を求めることで、温湿度補償が可能であることが分かった。

図①-(3)-2-2.6 イオン液体インピーダンスの温度、湿度依存を計測した結果

次に CO₂濃度に対するインピーダンス変化について計測を行った。前述の小型環境試験 機を用いて、温度 20℃、湿度 30%の環境にて CO₂濃度を変化させた際のイオン液体のイン ピーダンス値との関係を図①-(3)-2-2.7 に示す。計測点が少ないが CO₂濃度の増加に伴い、 インピーダンスが比例して減少していくことが確認できた。

図①-(3)-2-2.7 CO2 濃度とイオン液体インピーダンスの関係

温度補償、湿度補償を行うことでイオン液体のインピーダンス値計測により、CO2 濃度 が計測可能であることを確認するために、恒温恒湿漕内で温度をステップ状に変化させな がら、CO2 濃度計測を行い、市販の CO2 センサとの出力の比較を行った。①-(3)-2-2.8 に恒 温恒湿漕内にて行った実験の様子を示す。

図①-(3)-2-2.8 恒温恒湿漕内にてイオン液体のインピーダンス 及び温湿度、CO2濃度を計測する様子

図①-(3)-2-2.9 は、恒温恒湿漕内にて、湿度は一定に保ちながら、温度をステップ状に変 化させた際の、温度及び湿度プロファイル(左上)、イオン液体のインピーダンス生データ および温湿度補償後のイオン液体インピーダンス(右上)、GSS 社の CO₂濃度センサにより 計測した CO₂濃度データ(左下)、温湿度補償後のイオン液体インピーダンスを CO₂濃度に 変換したものと、GSS 社 CO₂センサとの比較(右下)である。また、図①-(3)-2-2.10 は、温 度を固定し、湿度をステップ状に変化させた際の各種データである。いずれの場合でも、 イオン液体のインピーダンス計測値から、温度や湿度の変化を補償し、CO₂濃度を正しく 計測できることが分かった。

66

図①-(3)-2-2.9 恒温恒湿漕内にて温度をステップ状に変化させた際の各種実験データ

図①-(3)-2-2.10 恒温恒湿漕内にて湿度をステップ状に変化させた際の各種実験データ

①-(3)-2-3 イオン液体の固体化(ゲル化)についての検討 【再委託先:東京大学】

本節では、イオン液体を固体化(ゲル化)したイオン液体ゲルについて述べる。パッケージングにおける液体の難点をゲル化により解決するためである。製作法に関しては、参考 文献⁸⁾を参考にした。以下に本研究でのイオン液体ゲルの製作法について説明する。イオ ン液体ゲルはイオン液体とポリマーとを混ぜ合わせることによって生成される。本研究で はイオン液体として[EMIM][BF4]および[EMIM][TFSI]、ポリマーとして PVdF-HFP を用い た。イオン液体ゲルの製作プロセスを図①-(3)-2-3.1 に示す。まず 500 ml 容量のガラス瓶に N、N-ジメチルアセトアミド(N、N-Dimethyl Acetamide、以下 DMA)を、その後イオン液体 と PVdF-HFP の粉末を、重量比 20:1:1 の比率で混ぜ合わせた。イオン液体と PVdF-HFP は、 そのままでは混ざり合わないため溶媒として DMA を用いた。溶液を混ぜ合わせるために ボールミル(伊藤製作所、MF-4)を用いた。攪拌に要する時間は内容物の粘度によって差 があり、およそ 1 時間から半日ほどで完全に攪拌され、均一なコロイド溶液(以下、イオ ン液体ゾル)となるとされている。混ざりにくい場合や、早く混ぜたい場合は超音波洗浄機 を用いて超音波の振動を加えてやることでもイオン液体ゾルは形成可能であった。イオン 液体ゾルをゲル化するために、固着させたい箇所にイオン液体ゾルを滴下し、熱を加えた。 溶媒の DMA が揮発し、溶液が固形化することを確認した。

図①-(3)-2-3.1 イオンゲル製作法

図①-(3)-2-3.2 にイオン液体ゲルの外形写真および表面、側面の電子顕微鏡写真を示す。 表面形状は多孔質で、空孔部にイオン液体が液体状態で存在していた。これは PVdF-HFP を用いて電解液をゲル化した場合によくみられる特徴であり、空孔部に電解液はポリマー と独立して存在している。

図①-(3)-2-3.2 イオンゲルを電子顕微鏡にて観察した様子

最後にイオン液体ゾルの滴下量と、ゲル化した後の膜厚の関係を調べた。直径 6 mm の 孔をあけたダイシングテープをガラス基板に貼り付け、その孔にマイクロピペットを用い てイオン液体ゾルを滴下し、熱を加えて硬化させた。その後、テープを剥がし、イオン液 体ゲルのパターンを形成した。触針段差計を用いて膜厚を計測した。図①-(3)-2-3.3 に計測 結果を示す。グラフから分かるようにイオン液体ゲルの膜厚は、イオン液体ゾルの滴下量 とおおよそ比例の関係があることが分かった。ただし、ゲルの膜厚は均一というわけでは なく、淵部の盛り上がりや、表面の細かい凹凸が観察された。これはイオン液体ゾルの表 面張力およびゾル内に含まれていた気泡の影響と思われる。

図①-(3)-2-3.3 イオン液体滴下量とイオンゲル膜厚の関係

①-(3)-3 CO2 濃度センサ端末の実証実験

本節では、イオン液体を用いた CO₂ガスセンサを用いて行った実証実験についての詳細 を述べる。本実証実験の目的は、恒温恒湿チャンバー内ではなく、人の出入りが多く CO₂ 濃度の変化が激しい実際のオフィス空間で、本センサが市販の CO₂ センサと同様に CO₂ 濃度を計測できることを確認することにある。

実証実験場所として、東京大学、工学部2号館、8階81B号室を選定した。選定した理由として、30人程度の学生教職員が利用している部屋であり、一日を通じて部屋の出入りが多く激しい CO2濃度変化が見込まれることが挙げられる。実証実験として利用した部屋の間取りおよび CO2濃度を変化する実験セットアップを展開した位置を図①-(3)-3.1 に示す。

部屋面積は125m²、室内には最大で30名が同時にデスク作業を行っている。実験は平成 27年1月29日(木)、1月30日(金)の午後に行った。計測時には以下の4つの項目を 同時に計測している。

図①-(3)-3.1 実証実験を行った部屋の見取り図およびセンサ設置場所

①温度(センシリオン社、SHT シリーズ)
 ②湿度(センシリオン社、SHT シリーズ)
 ③イオン液体インピーダンス
 ④参照用の CO₂ 濃度(GSS 社 COZIR)

③のイオン液体のインピーダンスから事前に計測し取得していた、温度補償係数、湿度 補償係数を元に、①②の温湿度データを用いて温湿度補償を行い、イオン液体のインピー ダンス値のうち、CO2濃度に関係するインピーダンス値のみを抽出した。結果を図①-(3)-3.2 に示す。両日ともにイオン液体 CO₂センサの出力結果が、市販の CO₂センサの出力結果と 合致していることが分かった。

図①-(3)-3.2 実証実験における市販の CO₂センサとイオン液体 CO₂センサの計測結果比較

さらに、実証実験時のイオン液体 CO₂センサと市販の CO₂センサの消費電力に関して比 較を行った。比較結果を図①-(3)-3.3 に示す。市販の CO₂センサは 0.5 秒おきに NDIR 方式 で CO₂ 濃度を計測するセンサである。そのため、0.5 秒間隔で 40~50 mW のスパイクが立 ち上がっていることが分かる。また、1 時間継続して計測した場合、3.2mWh となることが 試算の結果より分かった。それに対して、イオン液体のインピーダンスを計測する我々の CO₂ センサは、センシング部分での消費電力はイオン液体のインピーダンスと流れる電流 から計算でき、約 0.4 mWh となっている。この消費電力は、電極部分の設計の変更や、後 述するイオン液体をゲル化する手法を用いることにより、インピーダンス値を大きくする ことで、より小さくすることが可能である。

図①-(3)-3.3 恒温恒湿漕内にて湿度をステップ状に変化させた際の各種実験データ

実証実験のまとめとして、イオン液体を用いた CO₂センサは、市販の NDIR 方式の CO₂ センサと同等の CO₂ 濃度検出性能を有し、さらに市販の CO₂センサよりも低消費電力であ ることが分かった。

①-(3)-4 省エネ効果について

本プロジェクトでは、無線センサ端末を用いて、導入前後での省エネ削減効果 10%を目 標としている。CO₂ センサ端末の使用するアプリケーションとして、オフィスビル内が挙 げられるが、省エネ効果 10%削減の効果については、2013 年 9 月に開催された空気調和・ 衛生工学会でダイキン工業株式会社が発表した論文 ⁹の内容から、空調の電力使用量の省 エネ効果を換気量制御から試算を参考にした。この論文によると、在室人数に基づく換気 量制御により、空調消費電力量の削減効果を試算した結果、図①-(3)-4.1 に示すように、既 存の CO₂ センサでモニタリングした場合、夏季では空調機の電力量を約 10%削減すること ができるとある。特に、室内に人数が少ない時ほど効果が大きいとされている。

- ・測定場所条件:室内機直下のエリア (6m×7m) ※人は一人もいないと仮定
- ・測定条件:室内機は停止状態(室内機の内部負荷とファン動力を削減できると仮定)
- ・換気量基準値: CO2 濃度 1000ppm ※外気 CO2 濃度 400ppm

図①-(3)-4.1 ダイキン工業より、省エネ効果

①-(3)-3 で述べた実証実験より、CO2濃度センサ端末で、室内の CO2濃度を定期に測定 モニタリングを行ない、例えば CO2濃度 1000ppm 以上の時に、空調機や受信機に喚起を促 す信号を送信するシステムを構築することで。省エネ 10%削減に寄与できると考えている。

①-(3)-5 まとめ

イオン液体を用いた小型かつ低消費電力の CO₂センサの開発を行なった。CO₂センサの開 発では、従来のセンシング方法と異なる新しいガスセンシング方法を採用し、低消費電力 なセンサを開発した。消費電力は既存ヒント比べ、約 1/8 で、100 μ W 駆動可能である。ま た光源やヒーターを用いていないため、小型・低背化が可能である。

センサ端末で室内(125m²)において濃度モニタリングを行ない、既存品と同等レベルのセンシング分解能を有することを確認した。このセンサ端末は省エネ効果 10%以上に寄与できるシステムである。

①-(3)-6 参考文献

1) 東レリサーチセンター:イオン液体テクノロジー、pp.24-25、(平成 25-08)

2) 西川恵子、大内幸雄、伊藤敏幸、大野弘幸、渡邉正義:イオン液体の科学、丸善出版、 pp306-310、(平成 24-11)

 3) 金久保光男、Thang Le Ngoc、梅木辰也、牧野貴至、鈴木明:イオン液体ハイブリッド 吸収液による二酸化炭素の分離回収技術の開発、SCEJ 42nd Autumn Meeting (平成 18-9)
 4) Masahito Honda、Yuske Takei: Low-power-consumption CO2 gas sensor using ionic liquids for Green energy management、SENSORS 2012 (2012) 5) 本多祐仁、竹井裕介: イオン液体[EMIMBF4]によるインピーダンス変化を利用した CO₂ 濃度センサの開発と応用、第三回イオン液体研究会 (2012 年)

6) Masahito Honda, Yusuke Takei : Ionic-Liquid Gel based Carbon Dioxide Gas Sensor, 5th Congress on Ionic Liquid (2013)

7) Masahito Honda, Yusuke Takei : Low Power Consumption CO₂ Gas Sensor Using Ionic Liquid,
223rd Electrochemical of Society (2013)

8) Ichiroh Takeuchi, Kinji Asaka, Kenji Kiyohara, Takushi Sugino, Ken Mukai, Hyacinthe, Randrtamahanaka, "Electrochemical Impedance Spectroscopy and Electromechanical Behavior of Bucky-Gel Actuators Containing Ionic Liquids," Journal of Physical Chemistry C, vol.114, pp.14627-14634, 2010.

9) 鈴木雅富、西野淳:中小規模ビル向け省エネ情報システムの開発(第1報)開発コンセプトと省エネ効果の試算結果、空気調和・衛生工学会(2013-9)

①-(4) VOC 濃度センサの開発【オリンパス(株)、(再委託先:信州大学)】

①-(4)-1 研究開発の背景と目標

<研究開発の背景>

VOC(volatile organic compounds、揮発性有機化合物)とは、印刷インクや塗料の溶剤、 石油、洗浄剤に含まれるトルエン、オクタン、エタノールなど有機溶剤の総称である。VOC は多量に摂取すると人体に有害な物質である。一方で、特に、印刷・塗装、半導体、石油 分野の工場においては製品の生産に必要な物質でもある。そこで、VOC を使用する工場で は、ポンプ・ファンを用いた排気システムにより作業環境の VOC 濃度を許容濃度以下に 保つことで作業員の安全を保証している¹⁾。工場の作業環境の安全衛生管理は正しく行わ れ、作業員の安全が守られるべきである。一方で、近年は工場における運用コストの低減 が求められている。そこで、作業員の安全の保証と運用コストの低減を両立するために、 VOC 濃度センサを用いて工場の作業環境の VOC 濃度をモニタリングし、VOC 濃度に見合 った排気を行う対応が考えられる。

VOC 濃度センサを用いた工場の環境モニタリングのイメージを図①-(4)-1.1 に示す。 VOC 濃度センサは作業環境の VOC 濃度を常時モニタリングし、VOC 濃度に応じてポン プ・ファンの流量を制御する。図①-(4)-1.2 に VOC 濃度センサを用いた排気システム制御 による工場の節電イメージを示す。現在の排気システムは常時一定の流量を排気している。 一方、VOC 濃度センサを用いれば VOC 濃度センサの出力に対応した排気流量の制御を行 うことが可能となり、排気システムの消費電力が低減される。しかし、工場の VOC 濃度 の連続的なモニタリングは行われていない。そこで、工場の作業環境モニタリングに適し た小型・低消費電力のセンサネットワーク用 VOC 濃度センサの開発が必要とされている。

図①-(4)-1.1 VOC 濃度センサを用いた工場の環境モニタリングのイメージ

図①-(4)-1.2 VOC 濃度センサを用いた排気流量制御による節電イメージ

現在、研究・開発が進められているハンディタイプの VOC センサの VOC 検出原理を図 ①-(4)-1.3 に示す。イオン化式センサ (図①-(4)-1.3(a)) と干渉増幅反射式センサ (図①-(4)-1.3 (b)) は構成要素が複数あるため小型化に向いていない²⁾⁻³⁾。熱抵抗式センサ (図①-(4)-1.3 (c)) は熱を利用するセンサ原理であるため、一般的に消費電力が高くなるという特徴がある⁴⁾。 共振式センサ (図①-(4)-1.3 (d)) は、感応膜の VOC 吸着による振動子の共振周波数の変化 を VOC 濃度に換算する原理である⁵⁾。工場の環境モニタリングに用いる小型・低消費電力 VOC 濃度センサとしては最適であると考えられる。

図①-(4)-1.3 VOC 濃度センサの VOC 検出原理

<研究開発の目標>

2cm×2cm×1cm以下の共振式 VOC 濃度センサと無線端末と有機太陽電池ユニットを搭載した、面積:2cm×5cm以下、平均消費電力:100µW以下で駆動するセンサネットワーク用 VOC 濃度センサを開発する。さらに、VOC 濃度センサの材料としてポリマーを用い

ることにより、センサの製造工程のグリーン化を目差す。

①-(4)-2 ポリマー材料の基本特性の評価

ポリマー材料はシリコン系材料に比べ、特に、製造工程における環境負荷が小さいという強い利点を有する。一方、ポリマー材料の振動特性は十分に研究されていない。そこで、 ポリマーを用いた工場の環境モニタリング用途の共振式 VOC 濃度センサの設計のため、 ポリマー材料の加工プロセスの確立とその振動特性の評価を進めた。

①-(4)-2-1 ポリマー材料の加エプロセスの確立

ポリマーをホットエンボスにより成形する手段として、ガラス基板にポリマー薄膜を成 膜して基材とする手段とバルクのポリマーを基材とする手段がある⁶⁻⁷⁾。共振式 VOC 濃度 センサの低コスト化の観点では、成膜工程を必要としないバルクのポリマーを基材とする 手段が最適である。しかし、バルクのポリマーを基材とした厚さ 50µm 以下の構造体の加 工の報告はない。そこで、本研究では厚さ 10µm 程度のカンチレバーをバルクのポリマー を基材としたホットエンボスによりの成形する加工法を確立する。ポリマー材料は、市販 の製品に広く使用されており汎用性が高く低価格という観点から、メタクリル酸メチル樹 脂(Polymethyl methacrylate, PMMA, CLAREX,、日東樹脂工業株式会社)とポリカーボネー ト(polycarbonate, PC, PC-1000、積水成型工業株式会社)を選択した。

ホットエンボスを応用した加工法は、ホットエンボスと接合と研磨の三段階の加工工程 からなる。図①-(4)-2-1.1にホットエンボスを応用したポリマーカンチレバーチップの加工 工程を示す。第一の工程はデバイス層と基板のホットエンボス工程である(図①-(4)-2-1.1a)。 デバイス層と基板はそれぞれ個別にホットエンボスにより成形される。第二の工程はデバ イス層と基板の接合工程である(図①-(4)-2-1.1b)。PMMA においては、表面活性化接合 法によりデバイス層と基板を接合した。 PC チップにおいては、接着剤(F7064、フロン 工業株式会社)を用いてデバイス層と基板を接合した。第三の工程は、ポリマーの研磨工 程である(図①-(4)-2-1.1c)。デバイス層に成形されたカンチレバーをリリースするために、 デバイス層のバックレイヤーを研磨工程によって除去した。研磨工程には、研磨剤 BAIKALOX(BAIKOWSKI JAPAN 株式会社)を用いた。

加工終了時の PMMA カンチレバーチップアレイ、PMMA カンチレバーの顕微鏡写真の 一例、 PC カンチレバーの顕微鏡写真の一例を図①-(4)-2-1.2 に示す。ホットエンボスを応 用した加工法により 9 種のカンチレバーチップが一度に作製される(図①-(4)-2-1.2a)。そ れぞれの PMMA カンチレバーチップの中央には PMMA カンチレバーが成形されている。 PMMA カンチレバー(図①-(4)-2-1.2b) の長さは 498.5 µm、幅は 100.8 µm、厚さは 12.1 μmである。PC カンチレバー(図①-(4)-2-1.2c)の長さは495.8μm、幅は99.4μm、厚さは15.2μmである。

製品化時の低コスト大量生産に適したホットエンボスを応用した加工法の検討により、 長さ 500µm、幅 100µm、厚さ 10µm 程度の小型のポリマーカンチレバーを成形可能な低環 境負荷、且つ低コストな加工プロセスを確立した。

(a) The device layer and substrate were formed using hot embossing

図①-(4)-2-1.1 ホットエンボスを応用したポリマーカンチレバーの加工プロセス

図①-(4)-2-1.2 ホットエンボスを応用した加工法により成形された(a)PMMA カンチレバー チップアレイ (b)PMMA カンチレバー (c)PC カンチレバー

①-(4)-2-2 ポリマー材料の振動特性の評価

ポリマーを用いた共振式 VOC 濃度センサの設計に用いる基本データを取得するため、 ポリマーカンチレバーの超音波帯域における共振周波数、Q値と曲げ振動モード、サイズ、 材料の関係を評価した。表①-(4)-2-2.1 に本測定に用いたポリマーカンチレバーの材料と寸 法をまとめて記す。

	Length [µm]	Width [µm]	Thickness [µm]
PMMA1	200.2	100.8	23.9
PMMA2	298.9	101.1	17.7
PMMA3	498.5	100.8	12.1
PC1	194.7	84.2	19.3
PC2	295.5	88.4	13.8
PC3	495.8	99.4	15.2

表①-(4)-2-2.1 ポリマーカンチレバーの材料と寸法

a. 評価方法

ポリマーカンチレバーの共振周波数・Q 値はネットワークアナライザ(4395A、アジレント・テクノロジー社)とレーザードップラ振動計(MLD-221D-SIM、ネオアーク社)により測定した。カンチレバーチップは、0.5mm×φ20mmの圧電振動板(NECトーキン株式会社)の上にセットされる。圧電振動板はネットワークアナライザの出力により振動する。 圧電振動板により励起されたカンチレバー先端の振動はレーザードップラ振動計により検出さる。レーザードップラ振動計により検出されたカンチレバー先端の振動の信号はネットワークアナライザに入力される。測定は大気圧、23±2℃の条件で実施した。ネットワークアナライザの出力は周波数を連続的に100Hzのバンド幅で10Hzから1MHzの間でスイープさせ、各共振ピークを測定した。共振ピークの周波数応答曲線の測定は表①-(4)-2-2.1に示す7種のカンチレバーの各共振ピーク対して実施した。

b. 評価結果

PMMA カンチレバーと PC カンチレバーの共振周波数と曲げ振動モードの関係を図① -(4)-2-2.1 に示す。共振周波数は測定値と式(①-(4)-2-2.1)より得たれた理論値を同時にプ ロットしている。共振周波数の測定値は振動モードに依存しており、振動モードが高くな るに従い共振周波数が高くなる。また、共振周波数の測定値はサイズに依存しており、厚 くて短いカンチレバーの方が同じ振動モードにおける共振周波数が高い。PMMA カンチレ バー、PC カンチレバーそれぞれの共振周波数の最大値は 839Hz、686kHz であり、一般的 なシリコンカンチレバーと同等であることを確認した⁸⁾。さらに、共振周波数の実験値は 式(2-1)より得られた理論値と一致している⁸⁾。

$$f_n = \frac{\kappa_n^2 T}{2\pi L^2} \sqrt{\frac{E}{12\rho}} \qquad ((1)-(4)-2-2.1)$$

式 (①-(4)-2-2.1) の κ_n は n 次振動モードの係数であり、カンチレバーの曲げモードの係 数は κ_1 =1.875, κ_2 =4.694, κ_3 =7.855, and κ_4 =10.996 である。 $L \ge T$ はそれぞれカンチ レバーの長さと厚さである。PMMA のヤング率 E_p は 2.90 GPa, PMMA の密度 ρ_m は 1.20 × 10³ kg/m³ とした. PC のヤング率 E_c は 2.25 GPa, PC の密度 ρ_c は 1.2 × 10³ kg/m³ とした ⁹。

図①-(4)-2-2.1 PMMA カンチレバーと PC カンチレバーの共振周波数

PMMA カンチレバーと PC カンチレバーの共振周波数と曲げ振動モードの関係を図① -(4)-2-2.2 に示す。Q 値は各共振ピークの周波数 f_r とピークの出力-3dB のバンド幅 Δf_{-3db} よ り算出した。Q 値は振動モードに依存し、振動モードが高くなるに従いQ 値が高くなる傾 向にある。PMMA カンチレバー、PC カンチレバーで得られた最大のQ 値はそれぞれ 173、 132 であり、一般的なシリコンカンチレバーに比べて1桁小さい⁸。

以上の検討により、共振式 VOC 濃度センサの設計に必要な 10kHz-1MHz の超音波帯域 におけるポリマーカンチレバーの振動特性を取得した。さらに、ポリマーカンチレバーの 共振周波数は一般的なシリコンカンチレバーと同等であり、Q 値は一般的なシリコンカン チレバーに比べて 1 桁小さいことを確認した。共振式 VOC 濃度センサの感度は共振周波 数に依存し、検出限界は Q 値に依存する。ここで、工場の環境モニタリングに用いる VOC 濃度センサに求められるトルエン検出濃度は 200ppm、シリコンカンチレバーを用いた共 振式 VOC センサのトルエンの検出濃度は 1ppm 以下である⁵⁾。したがって、ポリマーを用 いた共振式 VOC センサの実現可能性は十分にあることも確認した。

図①-(4)-2-2.2 PMMA カンチレバーと PC カンチレバーの Q 値

①-(4)-3 ポリマーを用いた共振式 VOC 濃度センサの開発

サイズ:2cmx2cmx1cm以下、検出限界:許容濃度以下の共振式 VOC 濃度センサを実現 するため、振動子にポリカーボネート (polycarbonate, PC) カンチレバー、振動検出部材に ポリフッ化ビニリデン (PolyVinylidene DiFluoride, PVDF) 圧電フィルム、感応膜にポリブ タジエン (polybutadiene, PBD) を用いる構成とした共振式 VOC センサの開発を進めた。

①-(4)-3-1 ポリマーを用いた共振式 VOC 濃度センサの構成と VOC 検出原理

ポリマーを用いた共振式 VOC 濃度センサの構成と VOC 検出原理を図①-(4)-3-1.1 に示す。 共振式 VOC センサに必須の構成要素として、振動子、振動検出部材、感応膜が挙げられ る。本研究で開発するセンサは、それらの構成要素をすべて低環境負荷"グリーン"なプ ロセスを実現するポリマー材料から構成することを目指した。

図①-(4)-3-1.1 ポリマーを用いた共振式 VOC 濃度センサの構成と VOC 検出原理

センサは外部振動部材に実装され、外部振動部材は発振回路に接続される。発振回路の 励起信号が外部振動部材に加わると PC カンチレバーは共振周波数で振動し、その振動エ ネルギーは PVDF 圧電フィルムに伝わる。PVDF 圧電フィルムの出力は発振回路に入力さ れ、PC カンチレバーは共振周波数で発振された状態となる。この状態で PBD が VOC ガ スを吸着すると、PC カンチレバーの共振周波数が低下する。共振式 VOC 濃度センサは、 質量によるカンチレバーの共振周波数の変化により VOC ガスを検出する。

(1)-(4)-3-2 VOC 濃度センサの開発

開発したポリマーを用いた共振式 VOC 濃度センサを図①-(4)-3-2.1 に示す。センサは振 動子としての PC カンチレバーと PC カンチレバーの振動を検出するための PVDF と VOC を吸着するための PBD で構成される。PC カンチレバーは、右側の透明な部分で、VOC を 吸着するための PBD は、PC カンチレバーの上面に成形されている。PC カンチレバーの長 さは 2494µm、幅は 503µm、厚さは 265µm、PBD の厚さは 2.5µm であった。 PVDF は点線 で囲んだ部分にあり、PVDF の表面電極と裏面電極のオーバーラップ領域は PC カンチレ バーの付け根部分の 100µm × 503µm の部分に配置されている。センサは外部振動子として の 2mm×2mm×5mm の PZT (ジルコン酸チタン酸鉛、日本セラテック株式会社)に接着剤 (EPOCLEAR、コニシ株式会社.)を用いて固定し、パッケージ (48LD QUAD、京セラ株式 会社) に実装している。PZT 振動子は Au ワイヤーによって PVDF 圧電フィルは Cu 泊と Au ワイヤーによってパッケージの電極バッドと接続されている。パッケージを含む VOC 濃度センサ全体のサイズは 2cm × 2cm × 0.5cm である。

以上より、2cm×2cm×0.5cmの小型な共振式 VOC 濃度センサを低環境負荷なプロセス

を実現するポリマーを用いて開発した。

図①-(4)-3-2.1 ポリマーを用いた共振式 VOC 濃度センサ

①-(4)-3-3 VOC 濃度センサの動特性の評価

センサの動特性は有限要素法(FEM)によるモーダル解析およびレーザードップラ振動 計とPVDF出力による周波数応答測定により評価した。まず、COVENTOR®を用いてモー ダル解析を行った。メッシュタイプは四面体メッシュ、節点数は45551、 PC のヤング率 と密度は2.25 GPa、1.2×10³ kg/m³ とした⁹。次に、周波数応答をレーザードップラ振動 計とPVDFの出力によりネットワークアナライザを用いて測定した。測定は大気圧、23±2°C の条件で実施した。さらに、PVDF出力による周波数応答の測定はPBDを成膜する前のセ ンサとPBDを成膜した後のセンサについて行った。

ポリマーを用いた共振式 VOC 濃度センサの動特性を図①-(4)-3-3.1 にまとめて示す。 FEM で解析した PC カンチレバーの1次、2次、3次曲げ振動モードの共振周波数は9.6 kHz、 57.4 kHz、149.8 kHz である。レーザードップラ振動計で測定された PC カンチレバー先端 の1次、2次、3次の曲げ振動モードの共振周波数の10.1 kHz、52.6 kHz、147.6 kHz と一 致する。また、PBD を成膜する前の PC カンチレバーの1次、2次、3次の曲げ振動モード の共振周波数は PVDF 圧電フィルムの出力として直接検出され、それぞれ 10.1kHz、52.6 kHz、147.6 kHz であった。以上より、PVDF 圧電フィルムにより PC カンチレバーの高次 の曲げ振動モードの共振ピークを検出可能であることが分かった。

PBD が成膜された PC カンチレバーの 1 次、2 次、3 次の曲げ振動モードの共振周波数は 10.1kHz、51.7 kHz、147.5 kHz であった。PBD の成膜による共振周波数の低下は 2%以下で ある。また、PBD が成膜された PC カンチレバーの 3 次曲げ振動モードの Q 値は 163 であ る。以上の検証により、振動子に PC カンチレバー、振動検出部材に PVDF 圧電フィルム、 感応膜に PBD を用いる構成としたポリマーカンチレバーセンサの形態であっても高次の 振動モードにおいて 100 以上の Q 値が得られることを示した。

図①-(4)-3-3.1 ポリマーを用いた共振式 VOC 濃度センサの動特性

①-(4)-3-4 センサの VOC 感度評価システムの構築【再委託先:信州大学】

ポリマーを用いた共振式 VOC 濃度センサの VOC センシング感度を評価するために、共 振式 VOC センサの VOC センシング感度評価システムを構築した。VOC センシング感度 評価システムを図①-(4)-3-4.1 に示す。VOC センシング感度評価システムは VOC 希釈フロ ーシステムと温度制御チャンバーとセンシング回路で構成される。

VOC 希釈フローシステムは窒素ソースとマスフローコントローラ (MFC) とサーモスタ ットと4ウェイバルブ (4 way V) で構成される。VOC 希釈フローシステムはメインの2 つのラインを有している。1 つは任意の流量で窒素ガスを供給するクリーンライン、1 つは 任意の濃度と流量で VOC ガスを供給する希釈ラインである。メインの2 つのラインは4 ウェイバルブにより、温度制御チャンバーもしくは排気に切り替えが可能である。希釈ラ インはサーモスタットの温度とマスフローコントローラの流量を調整することにより任意 の濃度と流量の VOC ガスを温度制御チャンバーに供給することができる。サーモスタッ トの温度とマスフローコントローラの流量はアントワンの式と VOC の飽和蒸気曲線によ り算出される。サーモスタットにはトルエン (芳香族炭化水素)、オクタン (飽和炭化水 素)、エタノール (脂肪族化合物)を設置した。温度制御チャンバーは恒温槽とマイクロ チャンバーで構成される。温度制御チャンバーの温度は恒温槽に組み込まれたペルチェ素 子で制御され、温度エラーは 1800 秒で約±0.05°C である。マイクロチャンバーの容量は 15.6mm×15.6mm×3.38mm である。センシング回路は発振回路と周波数カウンタ(53131A, Agilent Technologies, Inc.)で構成される。発振回路はアンプ、バンドパスフィルタフェーズ シフタ、ゲインコントローラで構成される。

図①-(4)-3-4.1 VOC 感度評価システム

①-(4)-3-5 VOC 濃度センサを用いた VOC センシング

VOC センシングには、長さ 1498µm、幅 297µm、厚さ 100µm の PC カンチレバーに厚さ 4.5µm の PBD を成膜したセンサを用いた。センサは温度制御チャンバーに入れられ、発振 回路によりそれぞれ 294kHz の 4 次の曲げ振動モードで発振させられる。センサは VOC 希 釈フローシステムより供給される VOC ガスと窒素ガスに連続して暴露される。温度制御 チャンバーの温度は 20°C、共振周波数の測定間隔は 2 秒とした。

VOC 暴露によるセンサの共振周波数シフトを図①-(4)-3-5.1 に示す。センサは連続的に トルエン、オクタン、エタノールに 180 秒暴露される(図①-(4)-3-5.1 のグレーゾーン)。 濃度 1000ppm の場合、共振周波数はトルエン、オクタン、エタノールの暴露により、暴露 開始から 180 秒のポイントでそれぞれ 47Hz、40Hz、10Hz ダウンシフトした。センサの 180 秒でのトルエン、オクタン、エタノールセンシング感度は 0.047 Hz/ppm、0.040 Hz/ppm and 0.010 Hz/ppm である。濃度 5000ppm の場合、共振周波数はトルエン、オクタン、エタノー ルの暴露により、暴露開始から 180 秒のポイントでそれぞれ 267Hz、257Hz、65Hz に達し、 エタノールの暴露が終了すると共振周波数はバックシフトし、ベースラインに戻った。セ ンサは高濃度の VOC に連続して暴露されても熱負荷無しで VOC を放出することを示した。 トルエン吸着後のオクタン暴露とオクタン単体での暴露による共振周波数シフトの比較の ため、オクタン単体の暴露による共振周波数シフトを合わせてプロットしている。トルエ ン吸着後のオクタン暴露による共振周波数シフト量は 208Hz である。一方、オクタン単体 の暴露による共振周波数シフト量は 213Hz である。トルエン吸着後のオクタン暴露による 共振周波数シフト量とオクタン単体の暴露による共振周波数シフト量の差異は 2% であり、 センサは吸着した VOC を完全に放出していない状態においても一定の VOC センシング感 度を保証できる可能性があることを示した。

図①-(4)-3-5.1 VOC 暴露によるセンサの共振周波数シフト

トルエン暴露前のベースラインの共振周波数変動の標準偏差σは 2.6Hz であった。セン サの精度を 90% (±1.645σ) と設定すると¹⁰⁾、センサが 180 秒、100sccm の流量で検出可 能なトルエン、オクタン、エタノール濃度は 183ppm、215ppm、860ppm である。許容濃度 と微小流量 100sccm、180 秒におけるセンサの検出濃度を図①-(4)-3-5.2 に示す。

以上の検討により、流量 100sccm、180 秒でトルエン、オクタン、エタノールの許容濃度(OSHA-PEL:米国労働安全衛生局許容暴露限度)を検出可能な VOC 濃度センサの開発 に成功した。

図①-(4)-3-5.2 許容濃度と微小流量 100sccm、180 秒におけるセンサの検出濃度

①-(4)-4 ポリマーを用いた共振式 VOC 濃度センサの高精度化

低環境負荷なプロセスを実現するポリマーを用いた共振式 VOC 濃度センサが作業員の 安全の保証と工場の運用コストの低減を両立するための環境モニタリングをターゲットと した VOC センサとして十分に実用的であることを示すため、工場の作業環境の温度(JIS B 9922)における温度特性補償・ゼロ点補正機能の開発と繰り返し再現性の評価を進めた。

①-(4)-4-1 VOC 濃度センサの温度特性の評価

センサを工場の環境モニタリングに用いるためには、作業環境の温度範囲における精度 を保証しなければならない。しかし、ポリマーカンチレバーの高次の振動モードにおける 温度特性は報告されていない。そこで、センサの高精度化のため、ポリマーカンチレバー の高次の振動モードの共振周波数と温度の関係を検証する。

まず、小型温度センサを搭載した温度特性評価用センサを作製した。図①-(4)-4-1.1a に 温度特性評価用センサを示す。 PC カンチレバーサイズは長さ 1496µm、幅 300µm、厚さ 100µm である。センサの特徴は、セラミックパッケージに小型温度センサ (PT100, DM-314) を取り付けている点である。センサの4次の曲げ振動モードの共振周波数は 297 kHz であ った。

a. 評価方法

続いて、温度特性評価用センサの共振周波数の温度依存性を測定した。温度特性評価用 センサは温度制御チャンバーに入れられる。温度制御チャンバーは恒温槽とマイクロチャ ンバーで構成される。PC カンチレバーは発振回路により4次の曲げ振動モードで発振させ られる。発振回路はアンプ、バンドパスフィルタ、フェーズシフタ、ゲインコントローラ で構成される。周波数カウンタで計測された温度特性評価用 PC カンチレバーセンサの共 振周波数と温度センサ(PT100)の温度はデータロガーで収集する。温度制御チャンバー の温度は 19℃ から 26 ℃ に 0.42℃/min のレートで連続的に上昇させ、その後、26℃ から 19 ℃ に-0.42℃/min のレートで下降させた。測定は 2 度繰り返し行った。共振周波数と温度の測定間隔は 2 秒とした。

b. 評価結果

温度特性評価用センサの共振周波数の温度依存性を図①-(4)-4-1.1b に示す。温度特性評価用センサの共振周波数は温度が上昇するに従い、300 Hz/℃ のレートで低下する。また、 温度特性評価用センサの共振周波数は温度が低下するに従い、300 Hz/℃ のレートで上昇 する。温度範囲 19℃から 26℃における共振周波数周波数のシフト量は 2100Hz であった。 繰り返し測定における変化は確認されていない。本測定に用いた PC カンチレバーは 300 Hz/℃ の性能を有する温度センサとなっている。PC カンチレバーの 4 次の曲げ振動モード の共振周波数は温度に対して線形に近い負の相関関係を有しており、変局点は確認されな い。

以上の検討により、センサは工場の作業環境の温度(JIS B 9922)において温度補正テーブ ルを用いた温度補正手段により、高精度に温度特性補償およびゼロ点補正が可能であるこ とを確認した。

図①-(4)-4-1.1 温度特性評価用センサとセンサの共振周波数の温度依存性

①-(4)-4-2 VOC 濃度センサの共振周波数シフトの再現性の評価

VOC 濃度センサの共振周波数シフトの再現性を悪化させる要因として、温度によるポリ マー物性の変化と繰り返し振動によるポリマー物性の経年劣化があげられる。工場の作業 環境の温度(JIS B 9922)における共振式センサとしての耐用年数3年を保証する基礎データ を取得するため、繰り返し再現性の評価を進めた。繰り返し再現性の評価には小型温度セ ンサを搭載した温度特性評価用センサ(図①-(4)-4-1.1a)を用いた。

a. 評価方法

再現性の評価装置を図①-(4)-4-2.1a に示す。温度特性評価用センサは発振回路により 4 次の曲げ振動モードで発振させられる。センサは 27℃の環境温度下において 20 日間連続 して発振させられる。20 日間は測定間隔を 1min、測定時間を 1sec と設定した場合の 3 年 間の駆動時間に相当する。センサは一日に一度、温度制御チャンバーに設置され、20℃ か ら 28 ℃ の温度範囲の熱負荷を加えられる。温度制御チャンバーの温度は 28℃ から 20 ℃ に下降させ、その後、20℃ から 28 ℃ に連続的に上昇させた。温度特性評価用センサの共 振周波数と温度センサ(PT100)の温度は 2 秒間隔データロガーで収集した。

b. 評価結果

温度特性評価用センサの共振周波数の繰り返し再現性を図①-(4)-4-2.1b に示す。共振周 波数シフトは 20 日分のデータを合わせてプロットしている。20℃ から 28 ℃ の温度範囲 における温度と共振周波数シフトの傾きに変化はない。同一温度の共振周波数に 0.7%の差 があるが、単純減少、単純増加の傾向は確認されない。0.7%の差は測定毎にセンサをチャ ンバーに取り付けて、手動で周波数とゲインを 設定する際の誤差の可能性がある。センサ を 3 年以上駆動しても 0.7%以上の共振周波数、つまり、センサ感度の低下は起こらないと 考えられる。以上の検討により、共振式センサとしての耐用年数 3 年を保証する基礎デー タを取得し、センサの実用化の見通しを得た。

図①-(4)-4-2.1 共振周波数シフトの繰り返し再現性

①-(4)-5 センサネットワーク用 VOC 濃度センサの開発と実証検証

面積:2cm x 5cm 以下、平均消費電力:100μW以下のセンサネットワーク用 VOC 濃度センサを開発するため、小型、低消費電力な共振式 VOC 濃度センサモジュールの開発と無

線端末と有機太陽電池ユニットの一体化を進めた。さらに、センサを用いた VOC モニタ リングによる 10%以上の排気量低減効果を示すため、センサネットワーク用の VOC 濃度 センサを局所排気システムで動作させ、排気量低減効果を実証検証した。

①-(4)-5-1 VOC 濃度センサのモジュール化と無線端末の一体化

ー体化された VOC 濃度センサモジュールと無線端末を図①-(4)-5-1.1 に示す。まず、センシング回路を設計・試作し、VOC 濃度センサをモジュール化した。センシング回路は発振回路と I2C-IF で構成される。VOC 濃度センサモジュールの面積は 5cm×12cm、電源電圧は 3.3V、センサ駆動時の消費電流は 17mA である。次に、VOC 濃度センサモジュールと 無線端末を一体化した。無線端末は本 PJ で産総研が開発した低消費電力無線端末を用いた。

VOC 濃度センサモジュールと無線端末の構成とデータを図①-(4)-5-1.2 に示す。VOC 濃度センサの PC カンチレバーは発振回路により 4 次の曲げ振動モードの共振周波数で発振 させられる(図①-(4)-5-1.2a)。共振周波数は I2C- I/F により I2C に変換され、送信機から 受信機に通信される(図①-(4)-5-1.2b)。受信データを図①-(4)-5-1.2c に示す。無線端末に より、データ ID、受信時間と共に VOC 濃度センサの周波数データが送受信される。

図①-(4)-5-1.1 VOC 濃度センサモジュールと無線端末

図①-(4)-5-1.2 VOC 濃度センサモジュールと無線端末の構成とデータ

①-(4)-5-2 センサネットワーク用 VOC 濃度センサの開発

センサネットワーク用 VOC 濃度センサを図①-(4)-5-2.1 に示す。センサネットワーク用 VOC 濃度センサは VOC 濃度センサモジュール、無線端末、太陽電池ユニットで構成され る。VOC 濃度センサモジュールはセンシング回路を小型化し、さらに駆動電圧の仕様を 1.8V とした。VOC 濃度センサのサイズは 2cm × 2cm × 0.5cm である。無線端末は本 PJ で 産総研が開発した低消費電力無線端末を用いた。太陽電池ユニットは本 PJ で東工大、日清 紡が開発した有機太陽電池と電源ユニットを用いた。センサネットワーク用 VOC 濃度セ ンサは全て PJ の成果物で構成され、サイズは 2cm × 5cm × 3cm である。センサネットワー ク用 VOC 濃度センサの発振回路からの周波数計測時間は 0.1sec、送信部から受信部への通 信に必要な時間は実測値で 0.01sec である。電源制御やソフト上の必要時間を加え、測定・ 通信を行う時間は 0.2sec である。有機太陽電池から 20min に一度の電力供給が行われ、セ ンサネットワーク用 VOC 濃度センサは平均消費電力 36μW で駆動する。

以上より、ポリマーを用いた共振式 VOC 濃度センサモジュールと無線端末と有機太陽 電池ユニットを搭載した、サイズ 2cm×5cm×3cm、平均消費電力 36µW で駆動するセンサ ネットワーク用 VOC 濃度センサを実現した。

図①-(4)-5-2.1 センサネットワーク用 VOC 濃度センサモジュール

①-(4)-5-3 センサネットワーク用 VOC 濃度センサを用いた局所排気での実証検証

VOC 濃度センサを用いた VOC 濃度モニタリングによる 10%以上の排気量低減効果を検 証するため、センサネットワーク用 VOC 濃度センサを一般的な局所排気システムで動作 させ、排気量低減効果を実証検証した。

実証検証を行った局所排気システムを図①-(4)-5-3.1a に示す。局所排気システム(図①-(4)-5-3.1a の右図)において比較的 VOC が多量に使用された午後の無線受信データを図①-(4)-5-3.1b、実証検証データを図①-(4)-5-3.1c に示す。局所排気システム(図①-(4)-5-3.1a の右図)の流量は 0.4m/s、VOC 濃度センサ設置箇所の照度は 750lx である。

実証検証データ(図①-(4)-5-3.1c)は受信データと温度補正データをプロットしている。 また、市販の VOC 濃度センサ(VOC-121H、(有)オー・エス・ピー)で測定されたリファレ ンスデータを合わせてプロットしている。実証検証を行った局所排気システムは正しい運 用がなされているが、VOC 濃度センサを用いたモニタリングにより排気量を低減できる可 能性がある。例えば、局所排気システムを作業環境のトルエン濃度が常に 50ppm 以下とな るように運用する場合、VOC 濃度センサを用いれば VOC 濃度センサの出力に対応した排 気流量の制御を行うことが可能となり、トルエン 50ppm のライン(図①-(4)-5-3.1c の緑点 線)と温度補正データ(図①-(4)-5-3.1c の青実線)で囲まれた部分に相当する排気量の低 減が可能となる。 以上の実証検証により、センサを用いた VOC 濃度モニタリングにより排気システムの 排気量が 50%以上低減する可能性を示した。

図①-(4)-5-3.1 センサネットワーク用 VOC 濃度センサモジュールを用いた実証検証

①-(4)-6 まとめ

本研究開発では、2cm×2cm×1cm以下の共振式 VOC 濃度センサと無線端末と有機太陽 電池ユニットを搭載した。面積 2cm×5cm以下、平均消費電力 100µW 以下で駆動するセン サネットワーク用 VOC 濃度センサの開発を目差した。

はじめに、低環境負荷なプロセスを実現する小型のポリマーカンチレバーの加工工程を 確立し、10kHz-1MHz の超音波帯域におけるポリマーカンチレバーの材料、寸法、振動モ ードと共振周波数、Q 値の関係を明らかにすることで、ポリマー構造体の設計において重 要なデータを示した。次に、2cm×2cm×0.5cmの共振式 VOC 濃度センサを低環境負荷な プロセスを実現するポリマーを用いて開発した。また、センサの高感度化により、微小流 量 100sccm、180 秒でトルエン、オクタン、エタノールの許容濃度を検出可能な VOC 濃度 センサの開発に成功した。最後に、共振式 VOC 濃度センサモジュールの開発と無線端末 と有機太陽電池ユニットの一体化を進め、サイズ 2cm×5cm×3cm、平均消費電力 36µW で 駆動するセンサネットワーク用 VOC 濃度センサを開発した。

以上の研究開発を通じて、モジュール化した 2cm×2cm×0.5cmの共振式 VOC 濃度セン サと無線端末と有機太陽電池ユニットを搭載した。サイズ 2cm×5cm×3cm、平均消費電 力 36μW で駆動するセンサネットワーク用 VOC 濃度センサを実現した。さらに、ネット ワーク用 VOC 濃度センサを局所排気システムに設置して実証検証し、センサを用いた VOC 濃度モニタリングにより排気システムの排気量が 50%以上低減する可能性を示した。

①-(4)-7 参考文献

1) 米国安全衛生局, "Chemical Sampling Information", https://www.osha.gov/.

Lovelock, J. E.," A photoionization detector for gases and vapours.", Nature 188 (1960),
 401.

3) Hori, H., Ishimatsu, S., Fueta, Y., Hinoue, M. and Ishidao, T., "Characteristics of a Real Time Monitor Using the Interference Enhanced Reflection Method for Organic Vapors", J UOEH, 35 (4) (2013), pp.267-272.

4) Horrillo, M. C., Getino, J., Arés, L., Robia, J. I., Sayago, I. and Gutiérrez, F. J., "Measurements of VOCs with a Semiconductor Electronic Nose", Journal of the Electrochemical Socciety, Vol.145, 7 (1998), pp.2486-2489.

5) Mihara, T., Ikehara, T., Konno, M., Murakami, S., Maeda, R., Fukawa, T. and Kimura, M., Design, fabrication and evaluation of highly sensitive compact chemical sensor system employing a microcantilever array and a preconcentrator, Sensors and Materials, Vol.23, No.7 (2011), pp.397-417.

6) Suter, M., Li, Y., Sotiriou, G. A., Teleki, A., Pratsinis S. E. and Hierold, C., Low-cost fabrication of PMMA and PMMA based magnetic composite cantilevers, In Proceedings of IEEE Transducers'11 (2011), pp.398-401.

7) Amaya, S., Dao, D. V. and Sugiyama, S., Novel fabrication process for a monolithic PMMA torsion mirror and vertical comb actuator, Journal of Micromechanics and Microengineering, Vol.21 (2011), 065032.

8) Blom, F. R., Bouwstra, S., Elwenspoek, M. and Fluitman, J. K. J., Dependence of the quality factor of micromachined silicon beam resonators on pressure and geometry, Journal of Vacuum Science & Technology, B 10 (1992), pp.19-26.

9) 日本塑性加工学会,「プラスチック成形加工データブック-第2版」 (2002),日刊工 業新聞社.

10) 上本道久,「検出限界と定量下限の考え方」,ぶんせき,5(2010), pp.216-221.

①-(5) 赤外線アレーセンサの開発【オムロン(株)】

①-(5)-1 研究開発の背景・目的と目標

<研究開発の背景・目的>

店舗や製造現場、クリーンルーム、オフィスなどの環境のグリーン化を最適に進めるた めに、広範囲で多種な各種電子電気機器、空調機器、さらに製造装置などの使用状況や環 境としての空間の状況、従事者の状況などをよりきめ細かく把握する必要性がある。従来、 オフィスなどのトイレや、エアコンや液晶テレビなどの家電において、省エネルギーの観 点から、人の有無を検出するために、人が発する赤外線を検知する赤外線センサが用いら れている。この赤外線センサをアレー化することで人や装置、環境の詳細な状態を把握す ることができる。しかし、現状の赤外線カメラに代表される赤外線アレーセンサは非常に 高価であり、安価な赤外線アレーセンサの開発が求められている。したがって、従来の検 出方式を踏まえた上で、低コスト・小型化かつ低消費電力化に最適な MEMS 技術を駆使し、 新たなセンサを開発することが重要になる。センサに求められる性能の一例としては、図 ①-(5)-1.1 に示す様に、5m 四方程度の部屋をカバーでき、かつ人の存在位置や動きの状態 を一目で検知することを想定し、1 画素の視野範囲が人と同程度の大きさとなるように 16 ×16 画素以上で、フレームレートとしては 10fps 程度の赤外線アレーセンサが必要となる と想定される。この赤外線アレーセンサを使用することにより、周辺の環境温度と人の動 きや存在位置を把握することで空調設備や照明機器を最適制御することによって、省エネ ルギー化に貢献する。

図①-(5)-1.1 人の位置・人数の検知による空調と照明の省エネのイメージ

<研究開発の目標>

最大 16×16 画素程度で、フレームレートとしては最大 10fps 程度の赤外線アレーセン サを開発する。センサチップとレンズ系を組み合わせた状態で、センサモジュールサイズ 2cm×5cm以下を実現し、合わせて、間欠動作や可変フレームレート、画素選択などのデ ータ処理を行うことにより、センサチップの平均消費電力 100μW 程度で人体検知が可能 な、小型赤外線アレーセンサを実現する。

①-(5)-2 赤外線アレーセンサの設計・試作

①-(5)-2-1 赤外線アレーセンサの概要

赤外線センサは、対象物から放射される赤外線を受光し、受光したエネルギー量に応じ て温度に換算して、電気信号として出力するセンサである(図①-(5)-2-1.1)。対象物の温 度を非接触で測定できるという特徴を持っており、電子レンジでの加熱物の温度測定や、 体温計等に利用されている。また、受光素子をアレー化することにより、測定エリア内の 温度分布を人間の視覚を刺激しないで物を見られるという特徴を持つ。図①-(5)-2-1.2 に、 カメラで撮影した画像と、赤外線アレーセンサで測定した熱画像を示す。カメラで撮影し た画像の場合、測定エリア内の個人を特定できるためプライバシーを侵害する可能性が高 い。一方、赤外線アレーセンサの熱画像の場合、人体から放射された熱の情報のみを利用 するので、プライバシーを侵害することなく、人の位置や人数を検知することが可能にな る。

図①-(5)-2-1.1 赤外線センサの概要

図①-(5)-2-1.2 赤外線受光素子をアレー化する効果

①-(5)-2-2 サーモパイル型赤外線アレーセンサの特徴

図①-(5)-2-2.1 に、赤外線センサの検知方式の比較を示す。赤外線センサの検知方式の中 で熱型として、代表的には、焦電型、ボロメータ型、サーモパイル型、ダイオード型が存 在する。この中で、①温度測定が可能であること、②バイアス電流が不要であること、お よび③通常の IC の作製に利用される CMOS プロセスを用いることが出来ることから、低 消費電力・低コストな赤外線アレーセンサの実現にはサーモパイル型が有利である。図① -(5)-2-2.2 にサーモパイル型赤外線センサの測定原理を示す。対象物から放射される赤外線 をサーモパイルセンサ素子に集光し、センサ素子上の温接点を加熱する。冷接点と温接点 は異なる金属で作製されており、ゼーベック効果により温接点と冷接点間の温度差に応じ た起電力が発生する。起電力に信号処理を施し、起電力の大きさに応じた温度信号に換算 することで、対象物の温度を測定する。

方式	動作原理	材料	生産性	温度測定	バイアス	光変調
サーモパイル	ゼーベック効果	Si	0	0	不要	不要
ボロメータ	抵抗変化	VO x	A→O	Δ	必要	不要
焦電	誘電率変化	BaSrTiO3	Δ	X	必要	必要

図①-(5)-2-2.1 赤外線センサの方式比較

図①-(5)-2-2.2 サーモパイル型赤外線センサの測定原理

①-(5)-2-3 赤外線アレーセンサの開発目標仕様

赤外緯線アレーセンサの使用イメージを図①-(5)-2-3.1 に示す。赤外線アレーセンサを搭載したセンサ端末(以下、赤外線アレーセンサ端末)は、床から 2.0m~3.0m の高さの天井に設置され、約1~2m 先の距離に滞在する人から放射される赤外線を測定する。

赤外線アレーセンサの開発目標仕様を表①-(5)-2-3.1 に示す。設備の大規模な工事を必要 とせず、長期間のメンテナンスを不要とするためには、赤外線アレーセンサ端末の小型化・ 低消費電力化が必要である。小型化の目標として、サイズ 2cm×5cm とした。また消費電 力については、1回/分の頻度で人数・人の位置・温度の検知を行った際に、平均消費電力 100uW以下を目標とした。

天井高さが 3.0m の場合、測定エリアは約 5m 角となる。このエリアを1つの赤外線セン サでカバーするためには、視野角は 90 度以上を目標とした。また、人の皮膚が安定して露 出している頭部を1 画素以上で測定するために、赤外線アレーセンサの解像度は、256 画 素以上(=縦 16 画素×横 16 画素)を目標とした。また、屋内における人と室温の温度差 を評価した結果を踏まえて、人検知を行うための温度分解の目標は 0.3℃以下とした。更 に、1.0m/sec で移動する人の位置を検知できるよう、応答速度 10fps 以上を目標とした。 なお、通信方式は、256 画素素子から送信されるデータ量と通信速度の制約から、1kHz 以 上の通信速度に対応可能な SPI (シリアル・ペリフェラル・インタフェース)を採用した。

図①-(5)-2-3.1 赤外線アレーセンサの使用イメージ

項目	值		
画素数	256 画素(=縦 16×横 16)		
視野角	90 度以上		
応答速度	10fps 以上		
温度分解能	0.3℃以下		
サイズ	20×37 mm		
通信方式	SPI		

表①-(5)-2-3.1 赤外線アレーセンサの目標仕様

①-(5)-2-4 サーモパイル型赤外線アレーセンサ小型化の課題

図①-(5)-2-4.1 にサーモパイル赤外線アレーセンサの感度の関係式を示す。赤外線アレー センサの小型化のためには、素子の小型化が必要となる。しかし、素子の小型化により感 度が低下することから、センサ素子の高感度化技術が必要となる。サーモパイル型赤外線 センサの感度向上の方策として、サーモパイル数を補足し熱抵抗を増加させることや吸収 膜を大きくすることによって開口率を上げる方向が取られているが、上記方策では、熱容 量と熱抵抗が増加するので素子の応答速度を下げることになる。また、従来のパッケージ 全体を真空状態にして感度を向上する方策が採られているものは、コスト増加の要因とな り利用範囲が限られていた¹⁾。

感度と応答速度の関係と性能比較を示したのが表①-(5)-2-4.1 である。この表からわかる ように、従来では感度と応答速度の両立が困難であったため、目標とする要望を実現する ために、必要十分な感度と応答速度を実現できていなかった²⁾⁻³⁾。

図①-(5)-2-4.1 サーモパイル赤外線センサの感度

表⑴-(5)-2-4.1 感度	こと応答速度の性能比較
-----------------	-------------

	_		目標	A社	B社	C社	D社
トレードオフ	-{	感度·温度分解能(K)	0.3	0.5	0.1	0.5	0.14
	Γ	応答(フレームレート)	10	4	17	10	10
	-	画素数	256	2000	64	64	16
		視野角	90	60	45	60	45

①-(5)-2-5 赤外線アレーセンサの開発コンセプト

我々は、小型で低消費電力な赤外線アレーセンサ端末を実現する手段として、従来の CMOS プロセスで作製可能なサーモパイル型赤外線アレーセンサを用い、素子の小型化に よる感度の低下を補うために、赤外線の集光を目的とした光学素子を積層し真空封止を行 う。また、真空封止によるデメリットである応答速度の低下に対して、素子構造設計によ り熱容量を小さくすることで素子の応答性向上を図る⁴。

赤外線アレーセンサチップの開発コンセプトに基づく構造模式図を図①-(5)-2-5.1(a)(b) に示す。センサチップは、センサ側とキャップ側の2つの部品で構成される。センサ側の 表面には、256 画素のセンサ素子とそれらを選択するためのスイッチング回路を形成し、 センサ側の裏面には AI の反射膜を形成する。キャップ側にはセンサ素子の周囲を真空にす るための空間と、その空間内のガス成分を吸着する吸着剤(ゲッター)を形成する。赤外 線センサの上部から入射し、センサ素子を透過した赤外線は、チップ裏面の反射膜によっ て反射し集光され、再び上部の赤外線センサの赤外線吸収膜に入射する構造となっている。 これにより、赤外線センサの開効率が向上し、赤外線吸収膜へ入射する赤外線光量が増加 することで、感度の向上が実現できる。センサ側とキャップ側の構成部品は、いずれもシ リコンウェハ上に作製する。センサ側とキャップ側を、ウェハレベルで真空封止すること によって、256 画素のセンサ素子周囲を真空にする。接合方式としてはウェハの平坦度の 許容性と接合材料からのアウトガスの観点から金属の共晶接合を採用した。接合後、ブレ ードダイシングを利用してチップサイズにカットする。

(a)チップ全体

図①-(5)-2-5.1 赤外線アレーセンサチップの構造模式図

①-(5)-2-6 サーモパイルセンサチップ設計

①-(5)-2-6-1 真空下におけるサーモパイルセンサ素子の感度設計

真空下でのサーモパイルセンサ素子の感度の関係式を図①-(5)-2-6-1.1 に示す。これより、 センサの感度は、センサ素子の熱抵抗に依存することが分かる。真空下でのセンサ素子の 感度を解析するために、素子のサーモパイルセンサ素子の熱抵抗を、サーモパイルセンサ 素子構造に起因する要素と、サーモパイルセンサ素子周囲の気体の熱伝導に起因する要素 に分解。サーモパイルセンサ素子の構造に起因する要素に対しては、構成材料の物性と形 状を主なパラメータとして、熱電解析ソフトでのモデリングを行った。また、センサ素子 周囲の気体の熱伝導に対しては、気体の熱伝導率とセンサ素子周囲の構造物との距離をパ ラメータとして、熱電解析ソフトでのモデリングを行った。これらの検討結果を集約して、 サーモパイルセンサ素子の構造と、素子周囲の気体の真空度の変化による熱抵抗の変化を、 モデル化した。

図①-(5)-2-6-1.1 サーモパイルセンサ素子の感度設計

①-(5)-2-6-2 ウェハレベル真空封止工程設計

従来の真空封止方式とウェハレベル真空封止方式の比較を、図①-(5)-2-6-2.1 に示す。従 来の真空封止では、センサチップを別のパッケージ内に搭載し、パッケージ内部を真空封 止する方式であった。この方式では、パッケージ分だけサイズが大きくなり、赤外線アレ ーセンサの小型化が困難であった。また、センサ毎に個別で真空封止を実施する必要があ り、低コスト化が困難であった。これに対し、ウェハレベル真空封止では、チップサイズ と同程度のキャップでセンサ素子を真空に出来るため、チップサイズまでパッケージサイズを小型化できる。加えて、複数のセンサチップを一括で真空封止できるため、センサ1 個当たりの工数が削減でき、センサチップの低コスト化が可能になる。

接合方式としては、①ウェハの平坦度の許容が高いこと、②接合材料からのアウトガス が少ないこと、および②接合時のウェハ加熱温度で、素子の特性が変化しないことから、 AuSnの共晶接合を採用した。AuとSnが均一に拡散した共晶状態を形成するために、様々 な重量比と接合温度での条件出しを実施し、Au:Sn=8:2(重量比ベース)・接合温度は 350℃とした。また、図①-(5)-2-6-2.2に示すように、AuとSnの共晶接合部の下地となる Ti 膜と、SiO2の界面の密着力が低く、接合後にTi 膜とSiO2の界面でキャップ側が剥離す る課題が生じていた。これに対しては、Ti の成膜条件・Ti 膜幅とTi 膜とSiO2間の密着力 の関係を評価し、Ti とSiO2間の密着力を向上に向けた最適化を行った。また、AuとSn の重量比・接合温度の最適化も行った。

図①-(5)-2-6-2.1 真空封止方法とパッケージサイズの比較

図①-(5)-2-6-2.2 真空封止工程設計の課題

①-(5)-2-6-3 高速応答性の実現に向けたサーモパイルセンサ素子の構造設計

サーモパイルセンサ素子の構造設計結果を、図①-(5)-2-6-3.1 に示す。真空下で使用する サーモパイルセンサ素子の従来設計では、センサ素子の熱抵抗を大きくするために、赤外 線吸収膜の面積をなるべく大きくし、細く・長い2本の梁で吸収膜を保持する構造であっ た。この構造の場合、対象物から放射された赤外線を吸収しやすくなりサーモパイルセン サ素子の感度を高めることができるが、一方で、赤外線の吸収によって吸収膜で発生した 熱エネルギーが基板へ伝導しにくいため、サーモパイルセンサ素子の応答速度を高める事 が難しかった。

そこで、我々は、サーモパイルセンサ素子の形状を**S**字形状にすることで、熱抵抗の低 下を抑えながら熱伝導速度を高めた。

図①-(5)-2-6-3.1 サーモパイルセンサ素子の構造設計結果

①-(5)-2-7 赤外線アレーセンサチップの開発成果

①-(5)-2-7-1 真空下におけるサーモパイルセンサ素子の感度設計結果

サーモパイル素子周囲の真空度の変化に対する感度設計と実測の比較結果を、図① -(5)-2-7-1.1 に示す。真空度の変化に対して、設計値と実測値がほぼ一致していることを確認した。また、サーモパイルセンサ素子を真空封止することにより、約5倍の感度向上の効果が得られることを確認できた。これにより、従来よりも小型・高感度なサーモパイル センサ素子の設計を実現した。

図①-(5)-2-7-1.1 サーモパイルセンサ素子の感度設計と実測の比較結果

①-(5)-2-7-2 ウェハレベル真空封止工程設計の結果

ウェハレベル真空封止工程の設計結果を、図①-(5)-2-7-2.1 に示す。Ti 成膜条件・Ti 膜幅 の最適化により、Ti と SiO2 間の密着力を向上した。これにより、接合後のTi 膜と SiO2 膜の界面でのキャップ剥離の問題を解決した(図①-(5)-2-7-2.1.(a))。また、Au と Sn の重量 比・接合温度を最適化によって、従来、接合後のAu と Sn の共晶部分に生じていたひび割 れを解消した。これにより、長期間真空度を維持できなくなるリスクを低減することがで きた(図①-(5)-2-7-2.1.(b))。

(a)チップ剥離

(b)共晶接合部の SEM 写真 図①-(5)-2-7-2.1 ウェハレベル真空封止工程の改善

①-(5)-2-7-3 サーモパイルセンサ素子の応答速度測定結果

開発したサーモパイルセンサの SEM 写真と、サーモパイルセンサ素子の写真を、図① -(5)-2-7-3.1 (a),(b)に示す。7.0mm 角のチップサイズに、256 画素のサーモパイルセンサ素子 とスイッチング回路を形成した。加えて、サーモパイルセンサ素子のS字形状の最適化と、 センサ素子を構成する薄膜の応力制御により、高歩留りでセンサ素子を作製することがで きた。

サーモパイルセンサ素子の時定数の評価結果を、図①-(5)-2-7-3.2 に示す。チョッパーを 用いてサーモパイルセンサ素子へ間欠的に赤外線を照射し、一画素のアナログ出力をオシ ロスコープで測定することで時定数を評価した。時定数は 17msec 以下であり、この結果 から、サーモパイルセンサ素子の応答速度は 19fps (≒1000/17/3) であり、センサ素子と して 10fps 以上での動作が可能であることを確認できた。

(a)サーモパイルセンサの SEM 写真

(b)サーモパイルセンサ素子の写真

図①-(5)-2-7-3.1 作製したサーモパイルセンサの写真

Sensor signal (with optical hopper)

図①-(5)-2-7-3.2 サーモパイルセンサ素子の時定数の評価結果

①-(5)-2-7-4 チップ開発結果

開発したチップの写真を、図①-(5)-2-7-4.1 に示す。チップサイズは 6.9mm×6.9mm である。ウェハレベル真空封止方式を利用することにより、チップサイズにまでパッケージサ イズを小型化することができた。

屋内での使用を想定の元、開発したチップの信頼性評価結果を行った。試験項目は、85℃ 85%の高温高湿試験と、-40℃/80℃の熱衝撃の2種類である。試験結果を図①-(5)-2-7-4.2 に示す。ウェハレベル真空封止は、長期間の真空度維持が課題であったが、AuとSnの共 晶接合条件と接合部の構造を最適化と、ガス吸着材による真空度維持の効果により、チッ プ内の真空度を長期間維持する事が可能になった。

図①-(5)-2-7-4.1 開発したチップの写真

図①-(5)-2-7-4.2 信頼性評価結果

①-(5)-2-8 赤外線アレーセンサのモジュール設計

①-(5)-2-8-1 モジュールのコンセプト

赤外線アレーセンサのモジュールのコンセプトを図①-(5)-2-8-1.1 に示す。センササイズ の小型化のため、サーモパイルセンサチップと処理回路をレンズホルダー内に実装すると 共に、センサ出力を温度に換算するマイコンとその周辺部品をセンサ裏面に実装する。

図①-(5)-2-8-1.1 赤外線アレーセンサモジュールのコンセプト

①-(5)-2-8-2 モジュールの回路・温度換算部設計

赤外線アレーセンサモジュールの回路設計を図①-(5)-2-8-2.1 に示す。センサチップから 出力された信号を2段の増幅回路で増幅した後、マイコン内で 10bit のデジタル信号変換 に変換。得られた信号値とNTCサーミスタで測定した室温を元に、マイコンの Flash ROM に格納された補正テーブルを参照して温度換算を行う。低消費電力化のため、エリア内の 温度を測定する測定モードと、温度測定を停止する待機モードの2種類の動作モードをマ イコン内に搭載。測定モードと待機モードを切り替えることで、赤外線アレーセンサの間 欠動作を行えるようにした。また、256 画素のサーモパイルセンサ素子をスイッチングす る周期を変更できようにすることで、可変フレームレートを行えるようにした。

図①-(5)-2-8-2.1 赤外線アレーセンサの回路ブロック図

①-(5)-2-8-3 赤外線アレーセンサのモジュール開発成果

開発した赤外線アレーセンサの写真を図①-(5)-2-8-3.1(a)に、赤外線アレーセンサで取得 した熱画像を図①-(5)-2-8-3.1(b)に示す。アレーセンサのサイズは 2cm×3.7cm であり、2cm ×5cm 以下の小型化を達成した。

また、赤外線アレーセンサを床から 2.5m に設置した状態で人の熱画像を測定し、人の 領域とその周囲の領域を、熱で判別できそうかを確認した。測定した熱画像の一例を図 22 に示す。取得した熱画像から、人の頭部の領域(赤色部)と床の領域(青色部)の温度差 が約 2.0℃程度生じていることを確認。また、人の頭部の領域(赤色部)のサイズが 5 画 素程度あることを確認。人の特徴量として、人と周囲の温度差と、人の領域のサイズを利 用することで、人検知を行える見込みがあることを確認できた。

サイズ 2cm×3.7cm

(a)赤外線アレーセンサ

人の温度分布

実験条件 センサ設置高さ: 2.5m 室温: 23.0℃

(b)赤外線アレーセンサの熱画像 *左はカメラ画像。右が熱画像。 図①-(5)-2-8-3.1 赤外線アレーセンサとその熱画像

①-(5)-3 赤外線アレーセンサ端末開発

赤外線アレーセンサの温度データを利用し、エリア内の温度分布と、人の人数・位置を 検知できるセンサ端末の開発を行った ⁵⁾⁻⁶⁾。

①-(5)-3-1 赤外線アレーセンサ端末設計

①-(5)-3-1-1 赤外線アレーセンサ端末の目標仕様

赤外線アレーセンサ端末の仕様を、表①-(5)-3-1-1.1 に示す。赤外線アレーセンサ端末の 低消費電力化のため、測定エリア内の人検知を複数回行った後、無線送信を1回行うよう な使用に対応できるよう、端末の仕様を策定した。また。エリア内温度については、赤外 線アレーセンサから得られた 256 領域分(=16×16)の温度データの平均値を取り、16 領 域分(=4×4)の温度データに削減して送信する仕様とした。

	-	-	
仕様項目	値	補足	
サイズ	$2 \text{cm} \times 5 \text{cm}$		
平均消費電力	100u\U下	1回/分測定時	
	センサ ID		
	計測年月日		
データフォーマット	エリア内温度の最大値	4×4領域に間引いて出力。 複数回測定後、無線送信を行	
		う事を想定。	
	エリア内温度の最小値	\uparrow	
(出力データの構成要素)	人の位置	—	
	検知人数の最大値	複数回測定後、無線送信を行 う事を想定。	
	検知人数の最小値	\uparrow	
	赤外線アレーセンサ 周囲の温度	NTC サーミスタの温度	

表①-(5)-3-1-1.1 赤外線アレーセンサ端末の目標仕様

①-(5)-3-1-2 赤外線アレーセンサ端末の構造設計

赤外線アレーセンサ端末の構造図を図①-(5)-3-1-2.1 に示す。赤外線アレーセンサでエリ ア内の温度を取得し、人検知基板にデータを送信する。人検知基板では、温度データから エリア内の温度分布、および人の位置・人数を検知し、無線モジュールへ検知結果を送信 する。赤外線アレーセンサ端末の小型化のために、赤外線アレーセンサと人検知基板を積 層した構造とした。

①-(5)-3-2 人検知アルゴリズム設計

人検知アルゴリズムの概要を図①-(5)-3-2.1 に示す。赤外線アレーセンサ端末の低消費
電力化を図るため、パターンマッチングのような方法を利用せず、基準温度との比較により人検知を行う簡便なアルゴリズムとした。アルゴリズムの流れは以下の通りである。
①赤外線アレーセンサから、256 画素分の温度データを取得
②取得した温度データの最頻値を算出し、これを基準温度とする
③基準温度にしきい値を加算し、これよりも温度が高い領域を抽出
④抽出した領域の画素サイズを算出し、ある範囲内を満足する場合、人と判定

図①-(5)-3-2.1 人検知アルゴリズムの概要

①-(5)-3-3 赤外線アレーセンサ端末の開発成果

開発した赤外線アレーセンサ端末の写真を図①-(5)-3-3.1 に示す。デジタルノギスで赤外 線アレーセンサ端末のサイズ測定を行い、2cm×5cm 以下を満足することを確認した。こ れにより、センサーネットワークでの利用に適した小型な赤外線アレーセンサ端末を実現 できた。

次に、開発した赤外線アレー端末の平均消費電力を評価した。センサ端末の電源端子に 高精度な電流計を接続し、赤外線アレーセンサによる温度取得から人検知までの平均消費 電流を測定し、駆動電圧との積算を行うことで、平均消費電力を評価した。端末の測定頻 度は、省エネでの使用を想定した1回/分とした。評価結果を図①-(5)-3-3.2 に示す。赤外線 アレーセンサの高速応答性を実現したことで、温度データ取得にかかる時間を短縮(図の AD 取得の部分。従来品の場合は2.5 倍の時間が必要)。評価の結果、1回/分動作時におけ る赤外線アレーセンサ端末の平均消費電力は 95.1uW であった。これにより、センサネットワークでの利用に適した低消費電力な赤外線アレーセンサ端末を実現できた。

デジタルノギスでの サイズ測定結果: 19.99mm×49.99mm×16.69mm

図①-(5)-3-3.1 赤外線アレーセンサ端末の写真

駆動電圧: 3.09V 平均電流: 30.75uA ⇒平均消費電力 95.1uW(1回/min)

図①-(5)-3-3.2. 赤外線アレーセンサ端末の平均消費電力評価結果

次に、開発した赤外線アレーセンサ端末の人検知精度の評価を行った。床から 2.5m の 高さに赤外線アレーセンサ端末を設置し、測定エリア内に熱源が無い状態において、1 人 がセンサ直下に滞在した状態と、人が不在の状態で、検知人数が正しく出力される精度を 30 分間評価した。1 人がセンサ直下に滞在した状態での人検知精度は 80%、人が不在の状 態での人検知精度は 90% であった。

①-(5)-4 スマートオフィスワーキングでの赤外線アレーセンサ端末実証

中小規模(500m² 未満)のオフィスに自立電源で駆動・無線送信する赤外線アレーセン

サ端末、コンセントレータを設置し、フロア全体の温度分布・人位置の見える化に基づく 省エネ指示(空調・換気・窓開閉)の実施により、省エネ効果の実証を行った。

①-(5)-4-1 実証における赤外線アレーセンサ端末の役割

空調制御における赤外線アレーセンサ端末の検知項目を、表①-(5)-4-1.1 に示す。赤外線 アレーセンサ端末は、検知エリア内の人の温度分布・人位置・人数を検知する。これらの 情報をシステムで処理することによって、不在エリアでの無駄運転・過剰換気・無駄運転 のようなエネルギーロスを発見し、空調の停止や人数に応じた換気量の制御を行うことに よって、エネルギーロスの削減につなげる。また、これらの検知情報を利用することで、 空調だけでなく、不在エリアでの照明点灯のようなエネルギーロスの削減にも利用するこ とができる。

表①-(5)-4-1.1 空調制御における赤外線アレーセンサ端末の検知項目

		赤外線アレーセンサの 検知項目			
エネルギーロスの要因	ネルギーロスの要因 省エネ手法 「	温度	人位置	人数	
不在エリアの無駄運転	不在エリアでの停止/温度緩和	0	0		
過剰換気 (基準値:1000ppm)	換気量制御			0	
無駄運転	中間期の窓開閉ガイダンス (温暖な気候時の自然換気)	0			

【空調制御における赤外線アレーセンサの検知項目の例】

①-(5)-4-2 実証用赤外線アレーセンサ端末の仕様

オフィスワーキングで整合した、赤外線アレーセンサ端末の仕様を表①-(5)-4-2.1 に示す。 天井に貼るだけで端末を設置できるよう、センサ端末に太陽電池と無線通信モジュールを 一体化し、電源・配線工事を不要にした。また、太陽電池と無線通信モジュールは、スマ ートオフィスワーキング参画企業であるローム社の開発品を利用することとした。

仕様項目	仕様値
平均消費電力	590uW
計測回数	3 回/min
無線送信回数	1 回/min
端末サイズ	$7 \mathrm{cm} \times 7 \mathrm{cm}$
端末厚み	1.7cm
動作時間	平日8時間
備考	照度:約 20001ux

表①-(5)-4-2.1 赤外線アレーセンサ端末の仕様

①-(5)-4-3 開発した赤外線アレーセンサ端末

開発した赤外線アレーセンサ端末を図①-(5)-4-3.1 に示す。センサ端末は磁石で照明に張り付ける構造とした。表面に赤外線アレーセンサを配置し、裏面に太陽光パネルを配置することによって、照明光で発電した電力での動作が可能である⁷⁾。

赤外線アレーセンサ (表面)

(a)赤外線アレーセンサ端末の写真 図①-(5)-4-31

・サ端末の写真 (b)照明に取り付けた状態の写真図①-(5)-4-3.1 開発した赤外線アレーセンサ端末

赤外線アレーセンサ端末での人数検知精度の評価結果を図①-(5)-4-3.2 に示す。中小規 模オフィス内に2台の赤外線アレーセンサ端末を設置。設置したセンサの測定エリア内に、 4人が滞在(各センサに2人ずつ)した状態で30分間の出力人数を測定し、実際の人数と 一致する割合を評価した。その結果、最小出力人数が実際の滞在人数と一致する精度は 83%であった。

図①-(5)-4-3.2. 中小規模オフィスでの人数カウント精度の確認結果

①-(5)-4-4 中小規模オフィスでの省エネ効果

開発した赤外線アレーセンサ端末を、2 物件の中小規模のオフィスに設置。赤外線アレ ーセンサ端末を用いたセンサーネットワークシステムを構築し、フロア全体の温度分布・ 人位置の見える化に基づく省エネ指示(空調・換気・窓開閉)の実施による省エネ効果の 実証を行った。設置した赤外線アレーセンサ端末数は、計46台(41台と5台)である。

環境計測やエネルギー消費量等の把握(見える化)及びエネルギー消費量の制御(最適化)により、10%以上の省エネ効果を確認した。詳細は、③-(2)-i)中小オフィス用グリーン センサネットワークシステム開発の成果を参照のこと。

①-(5)-5 まとめ

空調設備や照明機器を最適制御による省エネルギー化への貢献を目的に、環境温度と人の人数や存在位置を把握できる小型・低消費電力な赤外線アレーセンサ端末の開発を行った。

サーモパイル式赤外線センサの感度と応答速度の両立の課題に対して、ウェハレベル真 空封止工程設計とS字型センサ素子構造設計を行い、16×16 画素で10fpsの応答速度が可 能な赤外線アレーセンサチップを開発した。

開発したセンサチップと処理回路・レンズ系を両面実装により組み合わせることで、モジュールサイズ 2cm×5cm 以下を満足する赤外線アレーセンサを開発した。また、間欠動 作や可変フレームレート、画素選択などのデータ処理と、基準温度との温度差を利用した 人検知アルゴリズムを搭載することにより、平均消費電力 100 µ W 以下の赤外線アレーセンサ端末を実現した。

更に、太陽電池と無線モジュールを搭載し、大規模な電源・配線工事が不要で、長期間 メンテナンス不要な実証用センサ端末を開発。中小規模のオフィスへ設置し、フロア全体 の温度分布・人位置の見える化に基づく省エネ指示(空調・換気・窓開閉)の実施による 省エネ効果10%以上の実証に貢献した。

①-(5)-6 参考文献

1) T.Ishikawa, M.Kimata, Proc. SPIE, Vol.4130, 152, 2000

2) M. Hirota, "120 x 90 element thermopile infrared focal plane array with precisely patterned Au-black absorber", Sensors and Actuators A135, 2007, pp. 146-151.

3) M.Takeda, M.Kimata, "Chip scale vacuum packaging for uncooled IRFPA", IEEJ Trans. FM, Vol. 127, No. 7, 2007

4) M. Ohira et. al., Proc. MEMS 2011, pp. 708-711 (2011)

5) WONG Kai-Yuen : Current and Future Bridge Health Monitoring Systems in Hong Kong, The Government of the Hong Kong Special Administrative Region Highways Department Reports, 2003-04-07

6) J.Lu*, H.Okada, T.Itoh, R.Maeda, "Towards the World Smallest Wireless Sensor Nodes with Low Power Consumption for Green' Sensor Networks", Proc. IEEE SENSORS, pp. 916-919, 2013.

7) J.Tanaka, M.Shiozaki, F.Aita, T.Seki, and M.Oba, "THERMOPILE INFRARED ARRAY SENSOR FOR HUMAN DETECTOR APPLICATION", Proc. MEMS 2014, pp. 1213-1216, 2014.

② 無線通信機能及び自立電源機能を搭載したグリーンセンサ端末の開発

②-(1) 超小型高効率ナノファイバー構造光電・熱電変換自立電源の開発【東京工業大学、 住江織物(株)、日清紡ホールディングス(株)、(再委託先:信州大学)】

②-(1)-1 研究の背景と目標

<研究開発の背景>

建物、工場、オフィス環境等に多数のセンサ端末を縦横無尽に配置することによって柔 軟かつ統合的なシステムを構築し、エネルギー消費の見える化と最適制御を行うためには、 センサ端末の小型化・低消費電力化に加えて、センサ使用環境中に希薄分散している光エ ネルギーや熱エネルギーを効率良く電力に変換することによってセンサに自立的かつ安定 的に電力を供給できる小型電源の開発が強く求められている。従来のセンサ電源として利 用されているボタン型電池やリチウムイオン電池は、小型化は可能であるが、電池交換や 充電等のメンテナンスが必要であり、多数のセンサ端末を必要とするセンサネットワーク システムの構築には適していない。また、室内環境発電(エネルギー・ハーベスト)技術 として実用化されているアモルファスシリコン型太陽電池では、一層の高効率化(高出力 化)と小型化・フレキシブル化を同時に実現することが難しいという現状がある。さらに、 光エネルギーのみを利用した電源は消灯時には使用できない。センサ利用環境の拡大を実 現するためには、複数の環境エネルギーを利用でき、さらに蓄電機能を備えた、小型・軽 量・メンテナンスフリーかつレイアウトフリーな自立電源の開発が必須である。

<研究開発の目標>

複数の環境エネルギー源を利用でき、さらに蓄電機能を備えた電源の開発により、セン サ使用環境中に希薄分散している光エネルギーと熱エネルギーを効率良く電力に変換し、 センサ端末へ安定的に電力を供給できるメンテナンスフリーな小型自立電源を実現する。

本研究開発項目では有機半導体材料を用いて光電変換素子および熱電変換素子を開発 する。プロジェクト期間内に 5cm×2cm 以下のサイズで 150µW以上の出力目標を達成し、 実環境下での実証試験を実施するために、光電変換を利用した電源モジュールで 150µW 以上の出力が可能な自立電源を開発する。さらに実証環境暗所用補助電源として熱電変換 を利用した電源モジュールの開発を進める。要素技術として原料(有機半導体)合成技術、 原料のナノファイバー化技術、発電素子のシート化技術、発電・蓄電一体化技術、電源モ ジュール化技術を確立し、実証実験環境下でセンサ端末電源として使用する。

<有機材料と特徴と光電変換素子の構成>

有機材料は軽量・薄型・フレキシブルな素子作製に適しており、素子作製過程において

も塗布プロセスの利用が可能である。

各要素技術開発の報告に先立ち、本研究開発項目で検討した有機薄膜太陽電池の構成に ついて説明する。有機太陽電池(OPV)の一つ、バルクヘテロジャンクション型有機薄膜太 陽電池は、以下の素子構成から成る(図②-(1)-1.1)¹⁾⁻³⁾。

基板 / ITO (陽極) / 正孔捕集層 (HCL) / 活性層 / 電子捕集層 (ECL) / 金属電極 (陰極) 左→右 (図中、下→上) へ順に各層を成膜、積層する。図②-(1)-1.1 の様に陽極が最下層 (=基板側) 、陰極が最上層となる素子を順層素子、陰極から順に構築したものを逆層素子と呼ぶ。各層の組成、膜厚等により、太陽電池の発電特性は大きく異なる。屋内向け自立電源に搭載する太陽電池パネルにおいては、HCL には PEDOT:PSS、ECL には TiOx を選定した ⁴⁾⁻⁵。

図2-(1)-1.1 太陽電池の素子構成

図②-(1)-1.2 に一般的な活性層として、p型有機半導体に P3HT、n型有機半導体に PC₆₀BM を用いた OPV⁶⁾⁻⁷⁾の分光感度曲線と視感度曲線を示す。両者はよい重なりを示しており、 OPV に用いられる有機半導体色素材料は可視光を効率よく吸収-変換できることが分かる。

図②-(1)-1.2 有機薄膜太陽電池の分光感度

2 eV 以上のエネルギーギャップを有する(すなわち 620 nm 以下の波長を吸収しうる) 有機半導体色素は比較的容易に合成できることから、OPV は屋内照明(可視光)に対する 発電素子として適している。OPV の性能は活性層に用いる有機材料によって決まるが、屋 内向け太陽電池としての性能を最大限に引き出すためには以下にのべる開発した有機材料 およびナノ構造制御技術に加えてさらに次の2点を考慮して素子を開発することが重要と なる。

- 光源に応じた素子内の各層での吸収および各界面での屈折条件を考慮した光学設計
- 低密度キャリアの再結合を抑制しうる電子、正孔各パスの形成および界面エネルギー 設計

②-(1)-2 ナノファイバー構造自立電源の開発【東京工業大学、住江織物(株)、(再委託先:信州大学)】

②-(1)-2-1 光電·熱電変換素子原材料製造技術の開発【(再委託先:信州大学)】

②-(1)-2-1-1 ナノファイバー構造を形成する有機薄膜太陽電池用有機半導体の開発 平面性骨格を含む有機半導体を設計し、自己組織化によるナノファイバー形成およびナノ ファイバー構造を含む有機薄膜太陽電池性能に関する検討を行った。開発した2種の有機

半導体の合成スキムを Scheme 1 に示す。中心にピレンを持ち、周辺にオリゴチオフェン 側鎖を持つ Py-1 および Py-2 を新規に合成した。 Scheme 1

Conditions: a) NBS/ dry DMF; b) Stille coupling, 2-(tributylstannyl)thiophene, 2,6-ditertbutyl-4-methylphenol , Pd(PPh₃)₄/ dry DMF; c)n-BuLi, 2-isopropoxy-4,4,5,5-tetramethyl-1,3,2,dioxaborolane/ dry THF; d) Suzuki coupling, **3** or **6**, Pd(PPh₃)₄, K₂CO₃ aq/ toluene, ethanol, 84% for **Py-1** and 73% for **Py-2**.

図②-(1)-2-1-1.1 a) Py-1 および b) Py-2 の自己組織化構造

開発した有機半導体は分子間の相互作用によって、ナノファイバーを形成することを偏 光顕微鏡観察(図②-(1)-2-1-1.1)、示差走査熱量測定、およびX線回折によって明らかと した。また、溶液およびキャストフィルムでの可視吸収および蛍光発光スペクトル測定か ら、開発した有機半導体が可視光領域の光吸収が可能であり、さらにナノファイバー化に よって吸収領域が長波長化することがわかった(図②-(1)-2-1-1.2)。

図②-(1)-2-1-1.2 a)Py-1 および Py-2 の溶液およびキャストフィルム中での可視吸収および b)蛍光スペクトル

さらに、電気化学的測定と吸収スペクトル解析から Py-1 および Py-2 の HOMO/LUMO 準位を求めたところ、有機薄膜太陽電池を駆動することが可能なエネルギー準位であり、p 型有機半導体として機能することが予想された(図②-(1)-2-1-1.3)。

図②-(1)-2-1-1.3 a)ナノファイバー構造を含む有機薄膜太陽電池の素子構成と b)それぞれの 有機半導体のエネルギー準位

ナノファイバー構造を形成できる Py-1 および Py-2 を p 型半導体として、フラーレン誘 導体と混合しスピンコート法で有機薄膜太陽電池を作製した。得られた有機薄膜太陽電池 の特性を図②-(1)-2-1-1.4 と表②-(1)-2-1-1.1 に示す。

図②-(1)-2-1-1.4 ナノファイバー構造を含む有機薄膜太陽電池の擬似太陽光下での a)電圧-電流曲線と b)分光感度スペクトル

表②-(1)-2-1-1.1 ナノファイバーを含む有機薄膜太陽電池の特性

Active layer (weight ratio)	Thickness (nm)	Anneal temp (°C)	J_{sc} (mA cm ⁻²)	$V_{oc}(V)$	FF	PCE (%)	IPCE (%)
Py-1:[60]PCBM (1:5)	50	150	3.81	0.88	0.35	1.2	50
Py-2:[60]PCBM (1:4)	50	150	5.7	0.8	0.38	1.7	63
Py-2:[70]PCBM (1:4)	50	150	8.84	0.83	0.35	2.6	84
P3HT:[60]PCBM (2:1)	70	150	7.45	0.61	0.61	2.8	67

オリゴチオフェン側鎖を持つ有機半導体を用いた有機薄膜太陽電池は、下記の点で優れ ていることがわかった。

- 開放電圧が有機薄膜太陽電池用 p 型半導体として一般的なポリ(3-ヘキシル)チオフ エン(P3HT)に比べ高い。
- 2. 可視光全体にわたって分光感度を持つ。
- 3. 光電変換効率は P3HT とほぼ同等。

高分子型有機半導体は精製が困難なため、微量な不純物の混入により太陽電池特性が多 く低下する。これに対し、本研究で開発した低分子系有機半導体は精製が容易で、高純度 材料を得ることができる。さらに、ナノファイバー構造の導入による開放電圧の向上は、 グリーンセンサを駆動するための自律電源における電池接続の簡素化につながる。本研究 で得られた有機半導体の設計指針を踏まえ、高効率化のための有機半導体の改良を次に行 った。

②-(1)-2-1-2 吸収領域を拡大した有機薄膜太陽電池用有機半導体の開発

前項で得られた有機半導体は 600nm 付近までの光を光電変換することができた。高効率

化のためには、光電変換できていない赤色光領域の有効利用が必要となる。そこで、有機 半導体構造内にドナー・アクセプター構造を導入し、吸収領域の拡大を行った。

Scheme 2

中心にピレン、オリゴチオフェンスペーサー、電子アクセプター性ロダニンからなる有機半導体を合成した(Scheme 2)。末端に電子アクセプター性であるロダニンを導入した ことによって、前項で述べた Py-1 と比較して 40nm 程度の長波長化が見られた(図② -(1)-2-1-2.1)。分子軌道計算の結果、ロダニンの導入によってオリゴチオフェンスペーサ ー内の角度が小さくなり、分子内の共役長が長くなり長波長化が得られたことがわかった。

図②-(1)-2-1-2.1 ロダニンを含む有機半導体の可視吸収スペクトルと分子軌道計算による

分子構造予測

4 種類のドナー・アクセプター構造を含む有機半導体を p 型半導体として、有機薄膜太陽電池特性について調査した(表②-(1)-2-1-2.1)。ドナー・アクセプター構造を含む有機 半導体を用いた有機薄膜太陽電池は、下記の点で優れていることがわかった。

- 1. 1Vを超える開放電圧を得ることができた。
- 2. デバイス構造を最適化した P3HT/PCBM と同等の光電変換効率を示した。
- 3. オリゴチオフェン側鎖の数が増加することによって変換効率が大幅に向上した。
- 4. オリゴチオフェン間の結晶性を高めることにより薄膜内での電荷移動速度が向上した。

表②-(1)-2-1-2.14種類のドナー・アクセプター構造を含む有機半導体を p型半導体と

Active layer (weight ratio w/w)	thickness /nm	V _{oc} / V	J _{sc} /mA cm ⁻²	FF	PCE / %
1/ PC ₆₁ BM (1:2)	65	1.04	3.21	0.33	1.1
2 / PC ₆₁ BM (1:4)	70	1.15	2.87	0.29	1.0
3 / PC ₆₁ BM (1:4)	70	1.11	5.53	0.38	2.3
4/ PC ₆₁ BM (1:2)	70	1.10	5.50	0.36	2.1
4/ PC ₆₁ BM (1:3)	70	1.13	6.30	0.39	2.8
4/ PC ₆₁ BM (1:4)	70	1.10	5.97	0.39	2.5
4/ PC71BM (1:3)	70	1.08	8.42	0.41	3.7
P3HT/ PC61BM (2:1)	90	0.65	8.38	0.67	3.7

P3HT/PCBM を活性層とする有機薄膜太陽電池の特性

図②-(1)-2-1-2.2 ドナー・アクセプター構造を持つ4を用いた有機薄膜太陽電池の擬似太陽 光下での (a)電圧-電流曲線と (b)分光感度スペクトル

ドナー・アクセプター構造を含む有機半導体を利用することによって、室内光全体 (300-700nm)の光電変換が可能となった(図②-(1)-2-1-2.2)。有機半導体の分子設計によ って吸収領域の拡大および電荷移動速度の向上が可能であることを明らかとした。

②-(1)-2-1-3 有機n型半導体を用いた有機薄膜太陽電池の開発

前項までは開発したp型有機半導体とフラーレン誘導体をn型半導体として有機薄膜太 陽電池を作製した。フラーレン誘導体は高コストであり、さらに大気中の酸素によって容 易に分解することが知られている。そこで、フラーレン骨格を含まないn型有機半導体を 開発した(図②-(1)-2-1-3.1)。

図2-(1)-2-1-3.1 n型有機半導体の化学構造

有機トランジスター用 n 型有機半導体として多く研究されているペリレン誘導体にチオフェンを導入した PDITh を合成した。チオフェンを導入したことにより、溶媒への溶解性が向上し、スピンコート法によって薄膜化が可能となった。

図②-(1)-2-1-3.2 n型有機半導体の a)エネルギー準位と b)太陽電池素子構成

2種のペリレン骨格を含む有機半導体をn型半導体として、有機薄膜太陽電池特性について調査した(図②-(1)-2-1-3.2)。N型有機半導体を用いた有機薄膜太陽電池は、下記の 点で優れていることがわかった。

- 1. 1Vを超える開放電圧を得ることができた(V_{oc} = 1.11V)。
- 2. 1,8-Diodeoctane を少量添加することによって結晶化が促進され、変換効率は大幅に向上した。
- 3. 空気中で作製しても性能が低下しない。

N型有機半導体を用いて有機薄膜太陽電池を作製することができた。現状変換効率はフ ラーレンと比べ低いが、ナノ構造の最適化により変換効率の向上が期待できる。本開発に より全有機太陽電池化に向けた半導体設計指針を得ることができた。

(2-(1)-2-1-4 近赤外領域への光電変換機能の拡大

p型有機半導体の設計によって700nm までの分光感度を持つ有機薄膜太陽電池を得るこ とができた。しかしながら、700nm 付近の分光感度は低く、この領域の分光感度を向上す ることができれば、より高い変換効率を得ることできる。そこで、少量添加することによ って、室内光内の赤色領域の分光感度を向上することができる色素添加剤を開発した。

図2-(1)-2-1-4.1 色素添加剤の化学構造

合成した色素添加剤構造を上に示す(図②-(1)-2-1-4.1)。金属フタロシアニン錯体は、 赤色領域のみに強い吸収を持つ。そこで、有機薄膜太陽電池内で光電変換機能を発現する ために、色素間の相互作用の制御およびバルクヘテロ構造内への位置選択的な導入を目的 に、上の色素を設計した。

図2-(1)-2-1-4.2 色素添加剤のエネルギー準位

合成した色素添加剤の電気化学および分光学的解析から HOMO/LUMO 準位を見積もっ たところ、p型とn型有機半導体の中間に準位があることがわかった(図②-(1)-2-1-4.2)。 この準位は、色素添加剤として適していることが示唆され、有機薄膜太陽電池内に導入す ることによって色素添加剤の持つ 700nm までの光吸収を利用できる。そこで、色素添加剤 を含む有機薄膜太陽電池を作製したところ、これまで変換できなかった 700nm 以上の光を 光電変換できた(図②-(1)-2-1-4.3)。

図②-(1)-2-1-4.3 a) 色素添加剤を含む薄膜の吸収スペクトル、色素添加剤を含む有機薄膜太 陽電池の擬似太陽光下での b) 電圧-電流曲線と c) 分光感度スペクトル

色素添加剤を有機薄膜太陽電池に混合することで、光電変換領域を拡張することが可能 となった。様々な色素添加剤を開発することによって、様々な光源のスペクトルに合わせ た分光感度曲線をチューニングすることができれば、グリーンセンサを利用する環境に合 わせた自律電源を得ることができる(例えばクリーンルームへの対応)。

室内光などの光電変換機能を持つ自立電源用有機半導体の設計に関し系統的な開発を 実施した。変換効率のさらなる向上が課題となるが、1 セルで1V を超える開放電圧を得 ることのできる有機半導体、空気中で安定な半導体、少量添加によって光電変換領域を変 えることできる色素添加剤は有機薄膜太陽電池の利用範囲の拡大に寄与できた。

②-(1)-2-2 ナノファイバー化技術の開発【東京工業大学】

②-(1)-2-2-1 有機半導体ナノファイバー効果の確認

a. 有機半導体ナノファイバーの作製

ナノファイバー構造を有する有機薄膜太陽電池を検討するにあたり、自己組織化による 有機半導体ナノファイバーの作製を検討した。材料には P 型有機半導体であるポリ-3-ヘキ シルチオフェン(P3HT)を利用した。

図②-(1)-2-2-1.1 析出 P3HT ナノファイバーの構造

P3HT ナノファイバーは次の方法により作製した⁸⁾。先ず、P3HT をクロロベンゼンに溶 解しオレンジ色の溶液を作製する。次に、P3HT クロロベンゼン溶液に貧溶媒であるシク ロヘキサノンを添加し、数時間撹拌する。溶液が徐々に紫色へ変化し、P3HT ナノファイ バーが析出する。得られた P3HT ナノファイバーを原子間力顕微鏡(AFM)で観察した結果 を図②-(1)-2-2-1.1 に示す。AFM 観察結果から、得られた P3HT ナノファイバーは、幅約 20nm、長さ 500nm 以上の形状を有していることが確認できた。

b. ナノファイバー構造有機薄膜太陽電池の特性評価

②-(1)-2-2-1 a で作製した P3HT ナノファイバーを活性層中に導入したナノファイバー構造有機薄膜太陽電池を作製し、その特性評価を実施した。ナノファイバー構造有機薄膜太陽電池の特性評価に用いた素子構成を図②-(1)-2-2-1.2 に示す。

図②-(1)-2-2-1.2 ナノファイバー構造有機薄膜太陽電池特性評価用素子構成

比較として、ナノファイバー構造を持たないバルクヘテロジャンクション(BHJ)構造有機 薄膜太陽電池についても作製及び特性評価を実施した。アクセプターであるn型半導体に フラーレン誘導体 PC₆₁BM を用いて、ITO/ガラス基板上にスピンコート法でホール輸送層 (PEDOT:PSS)、活性層を製膜し、真空蒸着法によりアルミ電極を製膜し有機薄膜太陽電池 を作製した。有機薄膜太陽電池の評価は擬似太陽光下における電流-電圧測定と分光感度測 定によって実施した。ナノファイバー構造とBHJ構造で変換効率が向上するよう素子構成 及び製膜条件を最適化した。最適化した太陽電池特性評価の結果を図②-(1)-2-2-1.3 と表② -(1)-2-2-1.1 に示す。

図②-(1)-2-2-1.3 ナノファイバー構造有機薄膜太陽電池の a)電流-電圧曲線と

b)分光感度スペクトル

	P3HT:PC ₆₁ BM	Voc	Jsc	FF	PCE
	(weight ratio)	(V)	$(mA cm^{-2})$	(-)	(%)
ナノファイバー構造	1:1	0.61	8.5	0.59	3.1
BHJ 構造	3:2	0.65	7.2	0.56	2.6

表②-(1)-2-2-1.1 有機薄膜太陽電池の特性一覧

ナノファイバー構造は BHJ 構造と比較して、開放電圧(Voc)は 6%低下し、短絡電流密度 (Jsc)が 18%増加、フィルファクター(FF)が 5%増加した。その結果、変換効率(PCE)は BHJ 構造に比べて約 19%向上した。この結果から、ナノファイバー構造の導入により変換効率 が向上することが確認できた。

また、分光感度スペクトルを比較すると発電に使用している波長域に変化は見られない ものの、ナノファイバー構造では各波長における IPCE の値が大きくなっている。これは 各波長から得られる電流が増えたことを示している。これらの結果は、活性層中に導入し た P3HT ナノファイバーがネットワーク状の連続構造を形成することで、正孔(ホール) 移動における効率的な輸送パスとして寄与し、ホール移動度の上昇による短絡電流密度の 増加をもたらしたと考えられる。さらに、電荷輸送が改善されたことによって、電荷の再 結合に伴うエネルギー損失が低減し、FF の改善に寄与したと考えられる。

そこで、ナノファイバー構造、BHJ構造のホール輸送特性について、空間電荷制限電流 (SCLC)法を用いて評価した。SCLC法に用いた素子構成を図②-(1)-2-2-1.4に示す。

図②-(1)-2-2-1.4 空間電荷制限電流(SCLC)測定用素子構成

有機薄膜太陽電池作製方法と同様の方法で ITO/ガラス基板上に PEDOT:PSS、活性層を 製膜し、金電極を蒸着して SCLC 測定用素子を作製した。得られた電流-電圧曲線を図② -(1)-2-2-1.5 に、ホール移動度を表②-(1)-2-2-1.2 に示す。

図②-(1)-2-2-1.5 空間電荷制限電流(SCLC)測定における電流-電圧曲線

表②-(1)-2-2-1.2 空間電荷制限電流(SCLC)測定によって算出したホール移動度

	ホール移動度
	$(cm^2 V^{-1} s^{-1})$
ナノファイバー構造	8.62×10 ⁻⁶
BHJ 構造	2.12×10 ⁻⁶

表②-(1)-2-2-1.2 に示した通り、ナノファイバー構造有機薄膜太陽電池におけるホール移 動度は 8.62×10⁻⁶ cm² V⁻¹ s⁻¹ と BHJ 構造(2.12×10⁻⁶ cm² V⁻¹ s⁻¹)に比べ約 4 倍上昇していること が SCLC 測定によって明らかとなった。

以上の結果から、ナノファイバー構造有機薄膜太陽電池では活性層へのナノファイバー 構造導入によるホール移動度の上昇によって、電荷の輸送効率が改善し、短絡電流密度、 フィルファクターが増加することで電池性能が向上することが明らかとなった。

(2-(1)-2-2-2 屋内照明向け太陽電池設計

a. 光学条件を考慮した活性層の検討

有機薄膜太陽電池の吸収特性は活性層に用いられる有機半導体材料固有の吸収特性の みならず、対向電極間の多層膜における干渉効果に大きく左右される。活性層の膜厚を制 御することにより、可視光を最も効率よく吸収しうる素子構成を検討した。なお反射層を 兼ねる陰極側のバッファ層である電子捕集層には高屈折率の TiOx を採用し、光の閉じ込 め効果の促進と金属電極による励起子失活の抑制を図った。図②-(1)-2-2-2.1 に分光感度の 活性層膜厚依存性を示す。可視光の吸収を主に担っているのは p 型有機色素である P3HT である。光源として 5001x の昼白色 LED 灯を想定した場合、190-260nm の干渉条件が分光 感度曲線と光源スペクトルとの重なりがより大きくなり、高い電流密度が期待できる。膜 厚 100nm 近傍や 300nm 以上においても光学干渉の利得があるが、活性層膜厚が薄すぎる と照射光を十分に吸収しきれず、厚すぎるとキャリアの再結合確率が上がることから、膜 厚 200nm 前後が最適膜厚であると考えられる。同様の方法で、各種 p 型、n 型の有機半導 体色素および様々な p:n 混合比に対して分光感度、太陽電池出力の膜厚依存性を確認し、 OPV 活性層の最適膜厚、p:n 比を決定した。実証用太陽電池パネル試作においては白色 LED の短波長側のピークと分光感度のピークの一致する 240nm を活性層膜厚と定めた。

図②-(1)-2-2-2.1 太陽電池性能の活性層膜厚依存性

さらに、塗布型製膜に用いる溶液条件、アニール法を最適化し、精緻に制御することに より活性層内にp型有機半導体のナノファイバー状構造体を導入した(図②-(1)-2-2-2.2)。 この構造体は正孔のパスとして機能しキャリアの再結合を抑制できるため、200nm以上の 厚膜においても低照度における電圧低下を抑制する事が出来た。その結果、P3HT:ICBA を 活性層に用いた、太陽電池において 500lx 照射下のセル効率 10%を達成した。20mm×50mm のパネル、開口率 90%の場合、160 µ W 以上に相当する。

図②-(1)-2-2-2.2 活性層表面 AFM 像

また、ナノ構造を導入した活性層のモルフォロジーは熱的に安定であり、耐久性向上に寄 与する。

b. 開放電圧向上のための電子捕集層の検討

高効率かつ安定な電子捕集層として報告されている TiOx を改良することで、開放電圧 に 0.05V の向上が見られた。最適化した太陽電池では疑似太陽光下で 0.9V、白色 LED 500lx 照射下においても 0.7V の開放電圧を示した。これにより直列化しない単一セルにおいても V_{MAX} が環境発電用昇圧 IC の最低入力電圧を超える事ができた。

②-(1)-2-3 発電素子シート化技術の開発【住江織物(株)】

センサネットワーク普及のためには、センサ端末のレイアウトフリー化が重要である。 また、センサ端末のレイアウトフリー化においては、端末駆動用電源のフレキシブル化が 課題となっている。そこで本項では、フレキシブル性や室内光における発電効率が高いと いう特徴を持つ有機薄膜太陽電池を繊維形状で作製し、さらに布帛化することによりフレ キシブルで設置場所を選ばない発電素子シート開発を行った。

また、自立電源搭載型センサ端末普及には端末低コスト化が課題となっており、本研究 ではこの課題解決のため、電池製造工程内に蒸着等の真空工程を含まない、大気圧下にお ける全塗布プロセスでの有機薄膜太陽電池作製手法開発を行った。

本項は②-(1)-2-3-1 繊維型太陽電池素子構成検討、②-(1)-2-3-2 繊維型太陽電池素子作製技術開発、②-(1)-2-3-3 発電布帛作製技術開発の3 つのサブテーマから構成されている。

②-(1)-2-3-1 繊維型太陽電池素子構成検討

繊維型太陽電池の基本構造は、芯材として導電性繊維を用い、その周囲に有機活性層、 さらにその上に塗布型電極材料が配置された構造とした。芯材が陰極、上部の塗布型電極 が陽極となる。この逆型構造の採用により陰極界面の酸化が抑制できるため、大気に対す る安定性が期待できる。塗布型電極としては、低抵抗な導電性高分子であるPEDOT:PSS(ポ リ(3,4-エチレンジオキシチオフェン):ポリ(スチレンスルホン酸))を採用した。さらに、有 機活性層-陰極間に電子を陰極へ選択的に移動させるためのバッファ層挿入についても検 討を行った。

本サブテーマでは、a. 繊維型太陽電池基材、b. 塗布型透明電極、c. 陰極側バッファ層 に関して、繊維型太陽電池として求められる要件に基づいた選定を行い、d. 素子構成の適 正評価として本サブテーマで選定した素子構成における太陽電池特性のポテンシャルを確 認した。なお、選定作業の簡便化のため、板型基板を使用した太陽電池素子で予備評価を 行った。今回、活性層材料に関しては有機薄膜太陽電池材料としてP3HT:PC₆₀BM(ポリ(3-ヘキシルチオフェン):フェニルC₆₁-ブチル酸メチルエステル)を用いた。なお、一般的な有 機薄膜太陽電池におけるP3HT:PC₆₀BM の最適膜厚は光吸収やキャリア再結合の兼ね合い から、およそ200 nm 前後といわれている。

a. 繊維型太陽電池基材の選定

繊維型太陽電池基材つまり芯材に求められる要件は、高い導電性を有しかつ陰極として 用いるため仕事関数が小さいこと、および高い平滑性を有することである。これらの点に 留意し各種金属ワイヤーから材料選定を行った。また本研究では布帛化のための織または 編加工が行える柔軟性も重要であるため、直径0.4 mm 未満の細線を採用することとした。

ア.実験方法

材料選定:金属種として、金(Au:5.10 eV)、銀(Ag:4.26 eV)、アルミニウム(Al:4.28 eV)、ステンレス(SUS:4.50 eV)、スズメッキ銅(Sn-Cu:4.42 eV)を選定対象とした⁹。 それぞれの仕事関数を略字とともに記載している。尚SUS はSUS304 を使用しているので Fe とCr の値を、Sn-Cu については銅単体では表面腐食が問題となるため一般に電気回路 で用いられているようにスズメッキを施したものを用いておりSn の仕事関数を記載して いる。Au、Ag、Al はガラス基板上に真空蒸着した基板を、SUS とSn-Cu は板状に加工さ れたものを基板として使用した。なお、陽極側バッファ層と透明電極層は各々別グレード のPEDOT:PSS を使用しており、いずれも塗布面との親和性向上のためフッ素系界面活性 剤を添加している。

太陽電池作製:アルゴンガス充填グローブボックス内で各基板上にスピンコートにより活 性層を製膜し、熱処理を施した。続いて、基板をグローブボックスより取り出し、大気下 にて陽極側バッファ層と透明電極層のスピンコートおよび熱処理をそれぞれ行い、太陽電 池を作製した。

電池特性測定:AM1.5G(100 mW/cm²)の擬似太陽光を照射して、その電流電圧曲線計測 により電池性能を評価した。

表面観察:SEM(走査型電子顕微鏡、キーエンス社製、VE-7800)を用いて観察した。

イ. 実験結果

図②-(1)-2-3-1.1 に基材検討用太陽電池の構造概略図と電池性能評価の結果を示す。Au と Ag を基材として用いた場合は素子がショートした。これは基材の表面自由エネルギー が高いために、活性層材料である P3HT:PC₆₀BM の製膜性が悪く層が形成できなかったた めと考えられる。また、Al については直列抵抗成分が非常に大きく、電流値が観測できな い結果となった。こちらは大気中の酸素により Al 表面が酸化され、酸化アルミ被膜で覆 われためと考えられる。以上より、SUS あるいは Sn-Cu が基材候補となった。

図②-(1) -2-3-1.2 に SUS および Sn-Cu ワイヤーの表面 SEM 像を示す。Sn-Cu ワイヤー 表面にはサブミクロンオーダーの凹凸が多く確認できる。前述したとおり、有機薄膜太陽

電池の活性層膜厚としてはサブミクロンオーダーが理想とされているため、Sn-Cu 表面に は求められる膜厚と同程度のラフネスが存在することになり、膜厚制御が困難である。一 方、SUS ワイヤー表面は比較的滑らかであり、また再現性も良かったことから繊維状太陽 電池の基材には SUS を用いることとした。

図②-(1)-2-3-1.1 基材検討用太陽電池の(a)構造概略図、(b)電流電圧曲線計測結果

図②-(1)-2-3-1.2 Sn-Cu および SUS ワイヤーの表面 SEM 像

b. 塗布型透明電極検討

今回我々は塗布型電極材料として、導電性高分子のなかで比較的導電率が高く、さらに 陽極材料として有利に働く p型半導体的性質を持つ PEDOT:PSS を選定した。しかし、実 際に上部塗布型透明電極として PEDOT:PSS を用いた太陽電池と、Au を蒸着したものの 電流電圧曲線を比較すると、PEDOT:PSS を使用したものは直列抵抗が大きく取り出せる 電流が小さいことが分かった。

PEDOT:PSS 水分散液に添加剤を加え、その導電性を向上させる試みには多くの報告例 がある¹⁰⁻¹¹。また、本研究において塗布型電極は、太陽電池素子構成の最上部に位置して おり活性層へ光エネルギーを供給するために光透過率も重要である。そこで、本研究では 太陽電池高出力化のため、高い光透過率と導電率を兼ね備えた塗布型電極開発を試みた。 今回は、活性層上に PEDOT:PSS を塗布する上で必要なフッ素系界面活性剤を添加した状 態で、さらに導電性向上のための添加剤を加え、その効果を検証した。

ア. 実験方法

製膜方法:ガラス基板あるいは石英ガラス基板上に、界面活性剤および導電性向上のため の添加剤を加えた PEDOT:PSS 水分散液を滴下し、スピンコートによって製膜し熱処理を 行った。PEDOT:PSS 水分散液への添加剤は、界面活性剤の濃度を固定し導電性向上のた めの添加剤の添加量を変化させ検討を行った。導電性向上のための添加剤には EG (エチ レングリコール)を選択した。

導電率評価:抵抗率計(三菱化学アナリテック製ロレスタ AX MCP-T370、プローブ型番: PSP)を用いて膜のシート抵抗を測定し、その値から評価した。

光透過率評価:紫外可視分光光度計(日本分光製 V650)により透過率を測定した。 膜厚測定:触針式膜厚計(小坂研究所製 Surf corder ET-4000A)により測定した。

イ. 実験結果

EG の添加量と膜厚をパラメータとして PEDOT:PSS 膜のシート抵抗を測定した結果を 表②-(1)-2-3-1.1 に示す。この結果より EG 添加によるシート抵抗の大幅な低下、つまり導 電性の向上が見られた。この効果は、EG 添加量を 6 vol%としたときに最も顕著に現れた。 また、PEDOT:PSS 膜の厚膜化によっても導電性を向上させることが可能だが、厚膜化す ることで上部電極として必要とされている光透過性を損なう恐れがある。

図②-(1)-2-3-1.3 に EG および界面活性剤を添加した PEDOT:PSS 膜の光透過率グラフ を示す。ここで、膜厚 100 nm、190 nm、310 nm サンプルの可視光域(波長 400 nm から 700 nm)における平均光透過率はそれぞれ 93.8 %、88.9 %、79.9 %となった。

試料番号	EG 添加量 [vol%]	膜厚 [nm]	シート抵抗 [Ω/□]
1	0	330	12000
2	2	230	200
3	6	210	140
4	10	210	180
5	6	100	210
6	6	330	100

表②-(1)-2-3-1.1 EG 添加量による PEDOT:PSS 膜のシート抵抗変化

図②-(1)-2-3-1.3 EG および界面活性剤を添加した PEDOT:PSS 膜の光透過率

以上の結果から、一般的な透明電極として使用されている ITO 蒸着ガラス基板と同程度 の光透過率¹²⁾と、高い導電性を兼ね備えた塗布型電極の作製条件を抽出することが出来た。 さらに、本手法で調整した塗布型電極を使用した場合、電極として使用する PEDOT:PSS 自体が p 型半導体として働くため、陽極側バッファ層を介さずとも効率よくホールを捕集 でき、積層工程の簡略化を実現できた。

c. 陰極側バッファ層の検討

有機薄膜太陽電池を高効率化する上で、光励起によって発生するキャリアを失活させず に取り出すことは重要である。そのため、pn 有機半導体の混合溶液から活性層を製膜する バルクヘテロジャンクション型の有機薄膜太陽電池では、活性層-電極界面のエネルギーギ ャップを緩和させ、各電極に応じたキャリアを選択的に捕集させるために活性層-各電極間 にバッファ層を挿入する構成が一般的である。上述したとおり、今回は陽極として p 型半 導体的性質をもつ PEDOT:PSS を用いており、陽極側バッファ層の有無で電池特性に変化 がないことを確認している。しかしながら、陰極については金属電極を使用する構成にな っており、活性層に直接金属が触れてしまうとリーク電流(逆電流)による並列抵抗成分 の減少やキャリアの再結合のため発電効率の低下につながってしまう。

本研究では、大気中にて塗布プロセスで製膜可能な陰極側バッファ層として、ゾル-ゲル 反応によって得られる金属酸化物半導体を用いて太陽電池を試作し、その電池特性を評価 することにより陰極側バッファ層の選定を行った。

ア.実験方法

材料選定:陰極側バッファ層に使用可能な金属酸化物半導体として、ゾル-ゲル反応で作製可能なTiOx(酸化チタン)とZnO(酸化亜鉛)を選定した。

太陽電池作製:大気中で SUS 基板上にスピンコートにより陰極側バッファ層を製膜し、

熱処理を施した。続いて、活性層として P3HT:PCBM 溶液をスピンコートし、熱処理。最後に透明電極層として、界面活性剤および導電性向上のための添加剤を加えた PEDOT:PSS 水分散液をスピンコートし、熱処理することで太陽電池を作製した。

電池特性測定: AM1.5G (100 mW/cm²)の擬似太陽光を照射して、その電流電圧曲線計測に より電池性能を評価した。

イ. 実験結果

図②-(1)-2-3-1.4 に陰極側バッファ層検討用太陽電池の電流電圧曲線を示す。電流電圧曲線の形から、陰極側バッファ層なし(Non)の条件では暗電流特性を見た場合に逆電流が流れており、電子だけでなくホールも SUS へ流れてしまっていることがわかった。またTiOx をバッファ層として用いた素子では、逆電流は抑制されているもののセルの内部抵抗が高くなってしまっている。ZnO を陰極側バッファ層とした素子では、逆電流を抑えられていることに加え、活性層-SUS 電極間の電子輸送準位の調整に成功しており、整流性とともに電池特性の向上を確認できた。以上の結果より、陰極側バッファ層としては ZnO を使用することとした。

図②-(1)-2-3-1.4 陰極側バッファ層検討太陽電池の電流電圧曲線 (a) 擬似太陽光照射 (b) 暗電流

d. 素子構成適正評価

本項目では、選定した太陽電池素子構成の基板型太陽電池の高効率化を行い、本素子構 成における太陽電池特性のポテンシャル評価を行った。

ア.実験方法

太陽電池作製:大気中で SUS 基板上に ZnO ゾルーゲル前駆体液をスピンコートし、熱処 理を施した。その後、ZnO 層上に P3HT:PCBM 溶液を塗布し、熱処理した。最後に、 P3HT:PCBM 層上に界面活性剤および導電性向上のための添加剤を加えた PEDOT:PSS 水 分散液を塗布し熱処理を行った。 電池特性測定: AM1.5G (100 mW/cm²)の擬似太陽光を照射して、その電流電圧曲線計測により電池性能を評価した。

イ. 実験結果

図②-(1)-2-3-1.5 に素子構成概略図と電流電圧曲線を、表②-(1)-2-3-1.2 に素子特性を示 す。材料溶液の配合比および活性層と陰極側バッファ層の膜厚を最適化した結果、擬似太 陽光照射時における変換効率を全塗布型太陽電池の文献値¹³⁾と同程度の2.3 %まで引き上 げることに成功した。以上より、本素子構成のポテンシャルが示せた。

図2-(1)-2-3-1.5 素子構成適正評価素子

(a) 構成概略図、(b)擬似太陽光照射時電流電圧曲線、(c)暗電流測定電流電圧曲線

	,			
試料	Voc [V]	Jsc [mA/cm ²]	FF	PCE [%]
構成適正評価素子	0.57	8.1	0.51	2.3

表②-(1)-2-3-1.2 素子構成適正評価素子の電池特性

②-(1)-2-3-2 繊維型太陽電池素子作製技術開発

繊維型太陽電池素子構成検討結果および考察に基づき作製した本研究の発電布帛に用いるための繊維型太陽電池素子構成概略図を図②-(1)-2-3-2.1 に示す。繊維型太陽電池素子を作製するにあたって、素子構成検討のポイントとして以下3 点が挙げられる。

- 1. 中心の繊維状基材に塗布を施していくため、上部が透明電極となる構成が必要
- 2. 大気に対して不安定な陰極材料を最下層に配置することで耐久性向上させる
- 3. 蒸着工程を含まない製造プロセス(全塗布型)

以上を考慮し、繊維型太陽電池の素子構成としては、上部透明電極用有機半導体材料を 陽極とし、金属電極を陰極として最下層に用いる逆層型有機薄膜太陽電池素子構成を採用 した。また、上部透明電極層から電気を取り出すために繊維型太陽電池素子では補助電極 としてリード線を用いた。

本研究の繊維型太陽電池素子作製に関する要素技術開発として、芯材に対して同心円状

にサブミクロンオーダーの有機半導体層を製膜し、積層するための精密塗布技術開発、お よび上部透明電極層から電気を取り出すための補助電極取り付け技術開発の検討を行った。 また、補助電極まで取り付けた繊維型太陽電池を外部衝撃から保護するための被覆技術開 発(→②-(1)-4-2) も検討した。

図②-(1)-2-3-2.1 繊維型太陽電池素子構成概略図

a. 精密塗布技術開発

今回繊維型太陽電池素子構成として選定した逆層型有機薄膜太陽電池素子の構成は【金 属線(陰極)/ZnO(陰極側バッファ層)/P3HT:PCBM(活性層)/PEDOT:PSS(陽極)/Au (補助電極)】であり、先行研究報告によると、基材への有機半導体層の塗布膜厚は、ZnO 層 30±20 nm、P3HT:PCBM 層 200±100 nm、PEDOT:PSS 層 200±100 nm で製膜することが 望ましいとされる¹⁴⁾⁻¹⁶⁾。したがって、繊維型太陽電池作製には、繊維状基材に対して同心 円状にサブミクロンオーダーの有機半導体層を製膜し、積層する技術開発が必須となる。

本開発テーマでは、芯材への有機半導体溶液の精密塗布手法として、一般的に繊維被覆 技術として確立されている繊維状基材を上から下へ流すダイコート法でのコーティングと、 芯材を溶液層から引き上げることでできるメニスカスを利用したメニスカス法でのコーテ ィングを塗布方法として採用し、繊維型太陽電池作製に向けた精密塗布技術開発を実施し た¹⁷⁻¹⁹。

ア. 実験方法

精密塗布方法:ダイコート法およびメニスカス法でのコーティング概略図を図② -(1)-2-3-2.2 に示す。ダイコート法コーティングで用いたダイス形状は溶液層開放型であり、 ダイスには芯材断面を拡大した形状での穴が設けられている。また、繊維走行方向は垂直 下方向で、走行方向にしたがってその大きさが小さくなるテーパー形状を有している。

それに対して、メニスカス法コーティングでは、繊維走行方向は垂直上方向とし、開放 型溶液層から基材を引き上げることで溶液の表面張力と基材との間に形成されるメニスカ スを利用して塗布を行う。また、乾燥後の膜厚は乾燥前の原料膜厚に比例する²⁰⁾。 繊維型太陽電池作製:洗浄した直径 0.4 mm 未満の金属線を芯材として用い、芯材上への 溶液塗布は全て大気中で実施した。最初に酢酸亜鉛二水和物をメチルセロソルブに溶解さ せ 2-アミノエタノールを添加し、調整した ZnO 前駆体液を芯材上に塗布し、熱処理を行 った。その後、ZnO 層上に活性層(P3HT:PCBM)溶液を塗布し、熱処理した。最後に、 P3HT:PCBM 層上に界面活性剤および導電性向上のための添加剤を加えた PEDOT:PSS 水 分散液を塗布し、熱処理を行った。

断面観察:走査型電子顕微鏡(日立ハイテクノロジーズ製 S-5500)で観察した。

図②-(1)-2-3-2.2 コーティング概略図(a)ダイコート法, (b)メニスカス法

イ.実験結果

図②-(1)-2-3-2.3 活性層塗布済み芯材の光学顕微鏡画像より、ダイコート法コーティング では塗布ムラが多くみられたが、メニスカス法コーティングでは比較的ムラも少なく活性 層が一様に製膜されていることがわかる。ダイコート法では吐出口壁面の影響や液だれが、 塗布ムラにつながる膜厚のバラつきの原因になっていると考えられる。その一方で、メニ スカス法では基材走行方向がダイコート法と異なり垂直上方向であるため、溶液層壁面か らの影響も無く、液だれ発生も無いことにより塗布ムラが抑えられた可能性が高い。さら に、走査型電子顕微鏡で断面観察を行い膜厚測定した結果からもわかるように、メニスカ ス法においては、ZnO 層 50 nm、P3HT:PCBM 層 150 nm、PEDOT:PSS 層 190 nm で製膜 できることを確認した(図②-(1)-2-3-2.4 参照)。

以上の結果から、芯材への有機半導体膜製膜および積層方法としてメニスカス法を採用 した。また、メニスカス法コーティングで繊維型太陽電池作製する場合、繊維状基板ラフ ネスを低減することにより有機半導体材料膜の塗布ムラもさらに減少し、高効率な繊維型 太陽電池素子の作製が見込める。

図②-(1)-2-3-2.3 活性層塗布芯材の光学顕微鏡画像

(a) ダイコート法, (b)メニスカス法

(b) PEDOT:PSS (190 nm) ↓ P3HT:PCBM (150 nm) ↓ ZnO (50 nm) Substrate

図②-(1)-2-3-2.4 繊維型太陽電池素子断面 SEM 画像

b. 補助電極取り付け技術開発

繊維型太陽電池素子の上部透明電極層は200 nm 前後の薄膜であるため、直接電極を電 極層に取り付け、電気を取り出すことは困難である。さらに、透明電極層に使用した PEDOT:PSS は最適化検討により導電率は向上したが、長繊維化するにしたがい長手方向 での抵抗増加により電気特性が低下する要因となる。そのため、一定間隔で透明電極層か ら電気を取り出すことが求められる。

維型太陽電池素子の補助電極の材料条件としては、芯材よりも細く、高い導電性および 高フレキシブル性を有する材料であることが必要であるため、補助電極材料として金属線 を用いて繊維型太陽電池素子への補助電極取り付け手法検討を実施した。

ア. 実験方法

繊維型太陽電池作製:洗浄した SUS 線を芯材として用い、芯材上への溶液塗布は全て大気 中で実施し、メニスカス法コーティングで行った。最初に酢酸亜鉛二水和物をメチルセロ ソルブに溶解させ 2-アミノエタノールを添加し、調整した ZnO 前駆体液を芯材上に塗布 し、熱処理を行った。その後、ZnO 層上に P3HT:PCBM 溶液を塗布し、熱処理した。最後 に、P3HT:PCBM 層上に界面活性剤および導電性向上のための添加剤を加えた PEDOT:PSS 水分散液を塗布し熱処理を行った。 補助電極取り付け:補助電極材料として SUS、金を選定した。繊維型太陽電池素子への補助電極取り付け方法としては、繊維型太陽電池に平行に沿わせる並列配置と、素子に対し てカバーリングするように巻き付ける2通りの方法を検討した。固定には変成シリコーン 樹脂接着剤を用いた。

表面観察:走査型電子顕微鏡(キーエンス製 VE-7800)で観察した。

電池特性測定:光照射面積を繊維長(cm)×繊維径(cm)とし、AM1.5G(100 mW/cm²)の擬似太 陽光を照射し、その電流電圧曲線計測により電池性能を評価した。

イ. 実験結果

補助電極の形状や材質に関わらず、繊維型太陽電池素子に平行に沿わせる並列配置では、 素子と補助電極が乖離してしまうため、連続的な導通確保は困難であったが、素子に巻き 付けることで導通は安定して確保できることがわかった。表②-(1)-2-3-2.1 に巻き付けによ る補助電極取り付け検討繊維型太陽電池素子の電池特性評価結果を示す。金よりも高硬度 で低柔軟性の SUS 線では素子にダメージを与えてしまうためかショートしてしまった。 しかし、金線は柔軟性が高いため、外周に巻き付けることで素子に多点で接触している可 能性が高いことから電圧・電流密度・FF が総じて向上した。これにより変換効率 (PCE) は 0.11 %となった。

さらに、最適化検討し、電池特性向上を図った結果を図②-(1)-2-3-2.5 に示す。膜剥離無 く補助電極が素子に密着している場合、直列抵抗が小さくなることで電圧および電流が大 幅に向上した。その結果、繊維型太陽電池素子の PCE はこれまでに報告されている文献と 同等レベルの 1.3 %を記録した²¹⁾。

補助電極材料	Voc [V]	Jsc [mA/cm ²]	FF	PCE [%]
SUS	0.010	0.0	0.0	0.0
金	0.15	2.3	0.31	0.11

表②-(1)-2-3-2.1 補助電極取り付け検討繊維型太陽電池素子の電池特性

図②-(1)-2-3-2.5 補助電極取り付け繊維型太陽電池素子の SEM 画像および 最適化検討繊維型太陽電池素子の電流電圧曲線

②-(1)-2-3-3 発電布帛作製技術開発

織技術を用いて繊維型太陽電池素子を 3 次元構造を持つ布帛状シートに加工する技術 を開発した。また、繊維型太陽電池素子を布帛化することで、軽量かつこれまでにないフ レキシブル性を有する太陽電池の作製を試みた。

a. 布帛作製用織機の選定および繊維型太陽電池素子の布帛化

繊維型太陽電池素子を布帛化するにあたって、素子面を十分に活用でき、織物の緯糸と して挿入する繊維型太陽電池素子が固定される織構造で製織可能な織機であることが、織 機選定に不可欠な要素となる。そこで、サイズ2cm×5cmの発電布帛作製には、有杼織機 で開口運動を主とし、地組織変更可能で紋様のある織物作製可能なジャカード織機と、無 杼織機でレビアの先端で緯糸をつかみ、杼口を走らせる緯糸運動を主な動きとし、地組織 変更可能なレビア織機を布帛作製用織機として選定した。

布帛作製に使用する繊維型太陽電池としては後述する②-(1)-4-2 項で樹脂被覆したもの を用いた。全長 5 cm の封止加工を施した繊維型太陽電池素子 1 本当たりの平均出力値を 室内照明下 3.3 μW とすると、目標値 150 μW を達成するためには 2 cm 方向に 45 本織り 込む必要がある。

ア. 実験方法

電布帛作製:一般的な織機を用いた布帛作製は、経糸を上下に開いた部分に緯糸を入れ、 上下に打ち込まれた緯糸を筬で引き寄せて経糸と緯糸を組織させる。その一方で、製織が 進むのに合わせて経糸を送出し、織り上がった布を送出し速度に合わせて巻き取る。これ らの運動の繰り返しで織物を仕上げる。緯糸挿入用繊維型太陽電池の長さは5 cm であり、 本開発品の地組織は三原織組織の朱子織とした²²⁾。

図②-(1)-2-3-3.1 に発電布帛作製用に採用した織機を示す。ジャカード織機には、経糸に 紺色 PET 糸、緯糸に白色 PET 糸と繊維型太陽電池素子を用い、レピア織機には、経糸に 白色 PET 糸、緯糸に白色 PET 糸と繊維型太陽電池素子を用いた。

電池出力測定:サンプルサイズ2 cm × 5 cm の発電布帛を作製後、両電極を並列結線し、 室内照明下で電池出力を評価した。

図②-(1)-2-3-3.1 (a)ジャカード織機, (b)レピア織機

イ. 実験結果

繊維型太陽電池素子を用いて作製した布帛型太陽電池を図②-(1)-2-3-3.2 に示す。素子固 定可能な織構造を有した地組織で、筬打ち圧力を上げることによる素子間ピッチの縮小を ジャカード織機にて試みた。その結果、最大で2cm 間に40 本の素子を織り込むことが可 能となった。一方、レピア織機で作製した発電布帛では、地組織の浮き糸数を調整するこ とにより、繊維型太陽電池素子を2cm 間に50 本の素子を織り込むことができた。浮き糸 を増やしたことで、緻密な構造を有し、かつフレキシブル性も維持した発電布帛作製に成 功した。作製した発電布帛では、室内照明での電池性能評価を行った結果より、サイズ2cm ×5cm で出力目標の150 μW を達成することができた。

図②-(1)-2-3-3.2 (a)ジャカード織機で作製した発電布帛, (b)レピア織機で作製した発電布帛

②-(1)-2-5 光·熱利用最適化技術の開発【日清紡ホールディングス(株)、東京工業大学】

超小型高効率ナノファイバー構造熱電変換自立電源の開発にあたり、有機半導体ナノフ アイバーを導入した薄膜を作製しその熱電特性を評価した。

熱電変換材料の性能は無次元性能指数(Figure of merit)次式で表される。

$ZT = S^2 \sigma T / \kappa \tag{1}$

ここで、S はゼーベック係数、 σ は電気伝導率、 κ は熱伝導率、T は絶対温度である。高効 率熱電変換素子の開発には ZT が大きい材料、すなわちゼーベック係数 S および電気伝導 率 σ が大きく、熱伝導率 κ の小さい材料が必要とされる。

また、簡易的な熱電性能評価においては ZT のうち電気的特性にのみ着目したパワーファ クター(Power Factor (PF))

$PF = S^2 \sigma \tag{2}$

が利用される。本研究における熱電特性の指標としてはこのパワーファクターを用いて評価を進めた。

有機半導体ナノファイバーとしては②-(1)-2-2-1 項で作製した P3HT ナノファイバーを利 用した。本項では、溶液キャスト法を用いて P3HT ナノファイバーフィルムを作製し、ゼ ーベック係数測定及び電気伝導度測定によってパワーファクターを算出して熱電特性を評 価した。また、比較として P3HT ナノファイバー構造を持たない P3HT フィルムについて も作製し、評価を実施した。各フィルムの表面構造は電界放射型走査電子顕微鏡(FE-SEM) を用いて調べた。

P3HT ナノファイバーフィルム、P3HT フィルムの FE-SEM 観察結果を図②-(1)-2-5.1 に示 す。この結果より、それぞれのフィルムにおいて P3HT ナノファイバーの有無が確認でき た。

図②-(1)-2-5.1 a)P3HT ナノファイバーフィルムと b)P3HT フィルムの表面構造

次に各フィルムの熱電特性を表②-(1)-2-5.1 に示す。P3HT のナノファイバー化によって、 電気伝導度が 5.3×10⁻⁵ (S cm⁻¹)と P3HT フィルム(1.2×10⁻⁵ (S cm⁻¹))対比 4.4 倍に大きく増加 した。これは膜内への P3HT ナノファイバー構造導入によって、ナノファイバーがランダ ムネットワークを形成し、これが電気伝導パスとして作用した結果、面内方向の電気伝導 度が大幅に向上したと考えられる。また、ナノファイバー化によってゼーベック係数は低 下したものの、P3HT ナノファイバーフィルムのパワーファクターは 12.5×10⁻⁴ (W m⁻¹ K⁻²) と P3HT フィルム(8.8×10⁻⁴ (W m⁻¹ K⁻²))に比べて 42%増加し、P3HT ナノファイバーフィル ムの熱電特性は向上した。

これらの結果から、熱電変換材料へのナノファイバー構造導入は、熱電特性の向上には 有効な手段であることが明らかとなった。

	σ [S cm ⁻¹]	S [μV K ⁻¹]	$PF=S^{2}\sigma$ [$\mu W m^{-1} K^{-2}$]
P3HT ナノファイバーフィルム	$5.3 imes 10^{-5}$	482	12.5×10^{-4}
P3HT フィルム	1.2×10^{-5}	872	$8.8 imes 10^{-4}$

表②-(1)-2-5.1 各フィルムの熱電特性一覧

これまでの結果から、熱電変換材料へナノファイバー構造を導入することにより電気伝 導度の向上による熱電特性の向上が確認できた。1次元材料であるナノファイバーはその 長軸を配向させることで、配向方向への電気伝導度の更なる向上が期待できる。

そこで、溶液にせん断力をかけながら製膜する溶液シェアリング法(図②-(1)-2-5.2)を用いて、P3HT ナノファイバーシェアリングフィルムを作製しその熱電特性を評価した。その結果を表②-(1)-2-5.2 に示す。P3HT ナノファイバーシェアリングフィルムの電気伝導度は14.6×10⁻⁵ (S cm⁻¹)とP3HT ナノファイバーフィルム(5.3×10⁻⁵ (S cm⁻¹))対比 2.7 倍に向上した。溶液シェアリング法によってナノファイバーの配向を制御することで更なる電気伝導度の向上が確認できた。この電気伝導度の向上により、P3HT ナノファイバーシェアリングフィルムのパワーファクターは37.3×10⁻⁴ (W m⁻¹ K⁻²)とP3HT ナノファイバーフィルム(12.5×10⁻⁴ (W m⁻¹ K⁻²))対比 3 倍に向上した。

これらの結果から、ナノファイバー構造熱電変換素子においては、ナノファイバーの配 向性を高めることで配向方向の電気伝導度が向上し、その熱電特性の向上が可能であるこ とが明らかとなった。

図2-(1)-2-5.2 溶液シェアリング法の模式図

	σ	S	$PF=S^2\sigma$
	$[S cm^{-1}]$	[µV K ⁻¹]	$[\mu W m^{-1} K^{-2}]$
P3HT ナノファイバーシェアリングフィルム	14.6×10^{-5}	505	37.3×10^{-4}
P3HT ナノファイバーフィルム	$5.3 imes 10^{-5}$	482	12.5×10^{-4}

表②-(1)-2-5.2 P3HT ナノファイバーフィルムの熱電特性一覧

②-(1)-3 発電・蓄電一体型自立電源モジュールの開発【日清紡ホールディングス(株)、 再委託先:信州大学】

早期の実証実験実施開始を見据え、無線センサ端末の試作の中で自立電源モジュールの 開発を行った。端末の基本構成は、電源部(発電素子、蓄電素子、昇圧回路)、センサ、 無線モジュール、制御用マイコンから成る。初期段階では部品はすべて市場で入手可能な 物を使用し、発電素子は東工大での有機薄膜太陽電池の開発が進んだ段階で市販品と入れ 替えることで開発を進めた。本プロジェクトで作製した1次試作機から最終試作機までの 比較一覧を表②-(1)-3.1 に示す。

項目	1次試作	2次試作	3 次試作	最終試作	
外観		18		100	
主用途	設計試作	機能試作	実証・展示会	本実証	
外形	$50 \times 35 \times 20$ mm	$60 \times 30 \times 15$ mm	$60 \times 29 \times 6.9$ mm	$60 \times 29 \times 8.6$ mm	
太陽電池	AM-1454CA (アモルファス シリコン)	AM-1456CA x4 (アモルファス シリコン)	東工大開発品 (有機薄膜)	東工大開発品 AM-1454CA	
昇圧回路	LT (リニアテク	3105 ノロジー社製)	ADP5090 (アナログ・デバイセズ社製)		
無線帯域		9201	MHz		
センサ	温度 照度	温度 湿度 照度			
送信データ	温度 照度	温度 温度 温度 湿度 湿度 照度 照度 内部電圧 送信シリアル No.		ま ま 言圧 アル No.	

表2-(1)-3.1 各試作機の比較

送信間隔	約 30 分@600lx	約 35 秒@1000 lx 約 55 秒@750 lx 約 75 秒@500 lx 約 175 秒@250 lx 約 3 分(設定)	約3分(設定) 約20秒 (展示会用設定)	約3分(設定)	
夜間駆動	不可		可		
主な改良点		送信間隔 センサ種類追加 小型化	夜間駆動 送信データ種 薄型化	電波障害対策 電力使用効率 再起動時間	

以下に各試作機について説明する。

②-(1)-3-1 1次試作機の作製

1 次試作機として、発電素子にアモルファスシリコン太陽電池を使用し、センサは照度 センサと温度センサの2類、920MHz帯の無線モジュールを搭載した無線センサ端末を試 作した(図②-(1)-3-1.1)。サイズは55×40×20mmとなった。回路構成を図②-(1)-3-1.2に 示す。

図2-(1)-3-1.11次試作センサ端末

図2-(1)-3-1.21次試作端末回路構成

1 次試作機の基本動作は、太陽電池で発電した電力を主キャパシタに蓄電し、主キャパ シタの電圧が 1V になった段階で電源制御回路が働き昇圧回路(DC/DC)を起動させ、セ ンサ及び無線モジュール回路が稼働し測定データを送信するというものである。主キャパ シタの電圧が 1V になった段階で回路を起動するのは、1V が電源制御回路等の駆動に十分 な電圧であることによる。データを送信すると電力を使い果たし、主キャパシタは空にな る。

実際に1次試作機を使用してどの程度の間隔でデータ送信が可能なのかを実験した。市 販の照度センサの周りに1次試作機を6台設置し、照度がおよそ600lxになるように照明 を調整し、各端末のデータ送信間隔を測定した(図②-(1)-3-1.3)。端末による個体差はあ るが、平均して30分程度の間隔でデータが送信されることが分かった。通信距離としては、 障害物が無い環境で50mまで通信可能であることを確認した。

図②-(1)-3-1.3 センサ端末のデータ送信間隔確認実験

②-(1)-3-2 2次試作機の作製

1次試作機の動作検証の結果を踏まえて2次試作機を作製し、実証環境で動作試験を行った。実証場所には、高湿度環境(相対湿度90%)で明暗期(昼夜間)のある植物工場を 選び、開発した完全無給電型電源の昼夜間24時間連続動作および長期安定動作の検証を行った。有機薄膜太陽電池について、これまでに、室内実証環境における動作状況および長 期安定性に関するデータはほとんど報告されていないため、本研究開発で行う室内環境と しては厳しい環境下での動作検証および課題抽出は、実用化を見据えた電源開発には特に 重要である。動作試験から抽出された課題については随時電源開発にフィードバックを行った。実際には植物工場の栽培棚に設置し、実証環境下での動作検証を開始した。2次試 作機では照度センサと温度センサに加え、植物工場では重要な環境要因である湿度を測定 するため、湿度センサも搭載した。搭載する太陽電池パネルのサイズを発電素子の開発目 標である 50×20mm とし、基板のレイアウトを見直すことによって、全体のサイズを 60 ×30×15mm とした。2 次試作機の外観を図②-(1)-3-2.1 に、その回路構成を図②-(1)-3-2.2 に示す。

図②-(1)-3-2.12次試作端末

図②-(1)-3-2.22次試作端末回路構成

1次試作機では、送信間隔が 30 分程度であったが、センサネットワークシステムの開発 のためには、空間的、時間的にきめの細かいデータ収集が必要と考えられるため、2 次試 作機では数分間隔でデータ送信が可能なように改良を加えた。1 次試作機では、主キャパ シタの電圧が 1V になった段階で回路を駆動させキャパシタに蓄えられた電力を全て使い 切っていたが、センサ及び無線モジュールを稼働させるためには必ずしも全ての電力を使 用する必要のないことから、データの送信が終了した時点でマイコンから電源制御回路に 信号を送り、主キャパシタからの電流を停止するようにした。この改良により主キャパシ タの電圧が再び 1V に上昇するまでの時間が短縮され、データの送信間隔も短縮された。 回路の検証のため 250lx 間隔で 1000lx まで照度を変えて測定したところ表②-(1)-3-2.1 のよ うな結果になった。

照度(Ix)	送信間隔(秒)	
1000	0'37	
750	0'53	
500	1'15	
250	2'57	

表②-(1)-3-2.1 照度による送信間隔

植物工場での動作検証の結果、高湿度環境が原因と考えられる不具合(動作不良)が発生したため、基板の表面を防湿材でコート処理した。この処理により不具合は解消された。

②-(1)-3-3 3次試作機の作製

植物工場では人工的に昼(明期)と夜(暗期)を作り出して栽培する場合がある。本研 究開発の実証実験を行ういちごの栽培施設においても昼と夜を作り出している。2次試作 機までは太陽電池に光が当たっていない間は駆動が停止するが、植物工場では夜間の環境 データも取得したいという要望があることから、3次試作機からは夜間の駆動を可能にす る改良を加えた。本試作ではこれまでの市販のアモルファスシリコン太陽電池に変え、東 工大で開発中の有機薄膜太陽電池を搭載した。全体のサイズは更に基板のレイアウトを見 直すことによって 60 × 29 × 6.9mm となった。

3次試作機の外観を図②-(1)-3-3.1に回路構成を図②-(1)-3-3.2に示す。尚、本試作から昇 圧回路を電源制御機能を持つ他社製のものと入れ替えたため、回路構成から電源制御回路 の記載が無くなった。

図2-(1)-3-3.13次試作端末

図2-(1)-3-3.23次試作端末回路構成

夜間(暗期)のデータ測定を可能にするためには、データの送信間隔を一定の値に固定 して余剰電力を主キャパシタに蓄える必要がある。3次試作では実証場所の環境を考慮し て約3分間隔で送信するように設定した。3分間隔の送信に使用した残りの電力は主キャ パシタに蓄えられ、夜間の使用電力を賄うことが可能となった。従来の主キャパシタが担 っていた、センサ及び無線モジュールを稼働させるための瞬間的な電力を供給する役割は 副キャパシタで担うようにした。送信するデータも測定した環境データだけでなく、主キ ャパシタの蓄電量の目安となる内部電圧と、送信回数のシリアル番号を付け加えた。

また、3 次試作機は2014年4月23日~25日にパシフィコ横浜で開催されたナノ・マイ クロ ビジネス展 (NMB 展) での展示用デモ端末としても使用した。NMB 展ではデータ 送信時間を20秒に調整し、照度の変化に応じて受信データが変化する様子などをアピール した。

②-(1)-3-4 最終試作機の作製

3 次試作機で、ほぼ植物工場での環境測定に必要な機能をもつ無線センサ端末が出来上 がった。最終的な実証実験に供するために150台の最終試作機を作製することにしたが、 受信率向上のための基板のレイアウト改良と、更に消費電力の無駄を省くための回路の改 良を加えた。最終的な全体のサイズは60×29×8.6mmとなり、厚さが3次試作より1.7mm 増えたが、これは従来使用していた小型の部品が入手不可能となり代替品に変更したため である。代替部品でも従来品と性能的には変わらない。試作には東工大での開発品と、市 販のアモルファスシリコンの両方の太陽電池を使用した。外観を図②-(1)-3-4.1に回路構成 を図②-(1)-3-4.2に示す。

図②-(1)-3-4.1 最終試作端末(東工大開発太陽電池搭載版)

②-(1)-3-4.2 最終試作端末回路構成

3 次試作機を使用した実証実験では、通信障害が原因と考えられる受信率の低さが問題 として挙げられた。センサ端末は植物栽培棚の金属フレームに取り付けられるが、3 次試 作機は無線モジュールのアンテナ回路が太陽電池パネルに覆われている上に厚さが薄いた め、太陽電池パネル自体が電波障害の原因となっていた。最終試作では太陽電池パネルの サイズを変えて 41.6×26.3mm とし、アンテナ回路部分を覆わないようにした。

また主キャパシタに充電する際の効率を上げるために充電スイッチ(SW)を、センサ及 び無線モジュール回路側への漏れ電流を止めるために起動 SW を組み込んだ。これらのス イッチの追加により電力の使用効率が上がり、主キャパシタの容量低下により駆動が停止 した状態からの再起動の時間も短縮した。

②-(1)-4 自立電源モジュール製造技術の開発

②-(1)-4-1 モジュール製造技術開発【日清紡ホールディングス(株)、東京工業大学】 a. パネル設計の検討

有機薄膜太陽電池(OPV)パネルのパターン設計において ITO の抵抗が重要な要素となる。OPV に用いられる ITO の抵抗は 10Ω/sq 程度。一方、発電時の OPV 内部の直列抵抗

成分は太陽光照射時において~10Ω、屋内照明下においては 1kΩ程度である。すなわち屋 外利用を想定した場合、単位セルのサイズは 1cm²以下にする必要があるが、屋内利用にお いては数 cm²程度であれば ITO 抵抗による大きな損失は生じない。2cm×5cm のパネルを 想定した場合でも、基板の外周に金属補助電極を配置するだけで十分である。OPV パネル の有効面積のみを考えると、パネル全体を単一セルが占有することが望ましいが、昇圧 IC の効率に対する入力電圧依存性も考慮し、パネル内に 1~4 つのセルを直列に配置した複数 パターンを設計・製作した(図②-(1)-4-1.1)。パネル面積 10cm²に対して、開口率(セル 面積 / パネル面積) は 90~70%である。

図2-(1)-4-1.1 太陽電池パネル(裏面)

b. パネル耐久性の検討

太陽電池パネルの劣化は主に次の3つの要素によって進む。

- 不純物由来の欠陥の拡大
- 酸化(水分、酸素に対する耐性・バリア性)
- 熱による活性層のモルフォロジー変化

酸化や欠陥の拡大は紫外線によっても生じるものの、熱や大気の影響に比べれば極めて 微小と言える。さらに、光学フィルターを利用すれば 400nm 以下の紫外線はカットするこ とができる。パネル高耐久化に向けて、材料選定を含む全生産工程管理の徹底と熱、大気 に対する影響の検討が重要となる。

ア. 不純物除去

有機半導体材料は十分に高純度な製品を選定した。特にn型半導体であるフラーレン誘 導体は大気成分によって性能劣化を引き起こすため、必要に応じて精製を行った。

基板となるITOパターニングガラスの洗浄工程としてワイピングからUV-オゾン処理ま での10工程を通して、マイクロレベルのコンタミ除去〜分子・原子レベルの表面改質を行 った。水溶性である PEDOT:PSS の製膜以降、TiOx 製膜を除く活性層成膜から封止までの 工程は水、酸素ともに 1ppm 以下の嫌気下において行った。TiOx のゾル-ゲル反応プロセス にはアルコール、水が必要であり、一方、直下に存在する n 型有機半導体は酸化されやす い物質である。しかし、この反応プロセスにおいては活性層表面に存在する不純物レベル の水分子を除去する効果が期待できるため、ゾル-ゲル TiOx を電子捕集層として採用する 事でより高耐久の太陽電池を得る事が出来る。陰極形成後-封止時に最終的に残存する ppm オーダーの水分については封止キャップ側の脱水剤により除去される。

以上、ここで行った不純物除去は少量サンプル試作までが可能なラボレベルの工程であ るため詳細は割愛する。要素技術としては同様であるが、生産に向けては別途プロセス検 討が必要である。

イ. 活性層材料の選定

植物工場等での実証に堪えうるパネル試作のため、種々の既知材料を検討した結果、以下の組合せの p型、n型有機半導体材料を選定した(図②-(1)-4-1.2)²³⁾⁻²⁸⁾。

i) p型: P3HT、n型: ICBA

図②-(1)-4-1.2a P3HT, ICBA

ii) p型: PCDTBT、n型: PC70BM

図2-(1)-4-1.2b PCDTBT, PC70BM

iii) p型: PTB-7、n型: PC60BM

図②-(1)-4-1.2 活性層に用いた p 型、n 型有機半導体材料組み合わせ。(a) p 型:P3HT, n 型:ICBA, (b) p 型:PCDTBT, n 型:PC70BM, (c) p 型:PTB-7, n 型:PC60BM

また、この3組のp型,n型有機半導体材料を活性層に用いた素子の電圧-電流特性を示す。

図②-(1)-4-1.3 白色 LED 照射下における太陽電池の電流-電圧特性

各々、最適化することにより W-LED (500lx) 照射下においても 10%以上の高いエネル ギー変換効率を達成できた。これは i) ICBA の高い LUMO 準位由来の高開放電圧、ii) PCDTBT の深い HOMO 準位由来の高開放電圧、iii) PTB-7 の広い吸収領域由来の高短絡電 流密度を効果的に活用した結果である。これら3種の構成の活性層を有する太陽電池パネ ルを試作し 500lx 照射下、100~2MΩ 負荷におけるの連続駆動試験を行った。結果を以下 に示す。

図2-(1)-4-1.4 活性層ごとの出力変化

高出力の初期特性に反しii)、iii)は顕著な劣化を示し、半年後においても安定化の兆しは 見られなかった。これに対しi)では有意な減衰は観られなかった。さらに室温-80℃昇温を 繰り返しても劣化は起こらなかった。この差異はp型有機半導体ポリマーの結晶性に由来 すると考えられる。P3HT はシンプルな分子構造と高いレジオレギュラリティーから強い 分子間力を有し高い結晶化度を示す。これに対して他の2つのp型ポリマーは多様な準安 定短距離秩序状態が存在しアモルファスに近い。よって活性層内のモルフォロジー変化が 容易に起こり、相分離状態が熱に対して不安定であると考えられる。このことは XRD や AFM の結果によっても裏付けられた。以上の結果より、実証用のパネルには P3HT:ICBA を採用した。

c. 封止検討

有機薄膜太陽電池において、電子を取り出す陰極界面はその原理上、大気に対して不安 定であり、高密閉な封止構造が必要となる。P3HT: ICBA の活性層を有する太陽電池パネ ルを試作し、内側に水分吸着材を有するガラスキャップによる封止を行った。接着に用い る UV 樹脂を検討・選定した結果、40℃-95%RH における保存寿命試験において3か月以 上、500lx 照射下の連続駆動試験において6ヶ月以上の安定性を確認し、PJ 終了時点にお いて有意な減衰は観られなかった。

②-(1)-4-2 封止技術開発【住江織物(株)】

布帛型発電素子の構成材料である繊維型太陽電池素子の構造はサブミクロンオーダー の上部透明電極とその周囲の補助電極が最外層となっており、この状態では物理的接触に よる素子の破壊が起こりやすく、布帛化加工を行うためには被覆層が必要である。

この被覆層に求められる必須条件として以下の3点が挙げられる。

1. 光エネルギー捕集のため無色透明で可視光域に吸収を持たないこと

2. 布帛化加工を行うため被覆層を均一膜厚で形成可能であり柔軟性を維持できること

3. 活性層の性能を維持するため被覆層形成に 150℃以上の高温処理が不要であること

また、有機薄膜太陽電池は大気に曝されることで劣化が進行するため、ガスバリア性が 高いものが理想的である。

本項目では、繊維型太陽電池を外部衝撃から保護するため、上記条件を満たした被覆層 材料の選定および被覆技術の開発を行った。

ア. 実験方法

繊維型太陽電池作製:洗浄した SUS 線を芯材として用い、芯材上への溶液塗布は全て 大気中で実施した。先ず、酢酸亜鉛二水和物、メチルセロソルブ、モノエタノールアミン を混合し、調整した ZnO 溶液を芯材上に塗布し、熱処理を行った。その後、ZnO 層上に は、活性層(P3HT:PCBM)溶液を塗布し、熱処理した。最後に、活性層上に界面活性剤お よび導電性向上のための添加剤を加えた PEDOT:PSS 水分散液を塗布し、熱処理を行った。 被覆層材料選定:上述の条件を満たすため繊維型太陽電池に対して、熱可塑性樹脂の溶融 被覆、または常温で液状の樹脂材料を用いたディップコーティングを被覆加工方法として 検討を行った。

電池特性測定:光照射面積が2(cm)×繊維径(cm)となるように遮光マスクをかけ、 AM1.5G(100 mW/cm²)の擬似太陽光を照射して、その電流電圧曲線計測により電池性能を 評価した。

被覆層材料のガスバリア性能評価:被覆加工を施した繊維型太陽電池を大気下、室内(20 ±5℃、40±10%RH)に保管し、一定時間経過後に電池特性測定を行い、そのセル効率変 化率から評価した。また、一部の被覆材料についてはJIS K7126-1(GC)およびJIS K7129-C に準拠したガス透過度測定を行った。

イ.実験結果

まず、加工方法の選定を行った。溶融被覆において繊維への被覆層形成を試みたが、被 覆層膜厚の制御のため繊維に張力をかける必要があり、加工中に繊維型太陽電池が破断し てしまった。このため、繊維自体に余計な外力をかけずに被覆加工を行えるディップコー ティングを加工方法として採用した。ディップコーティングによる繊維被覆検討を行った 結果、均一製膜が可能な材料としてアクリル樹脂溶液を選定した。

図②-(1)-4-2.1 にアクリル樹脂溶液を用いて被覆層を形成した繊維型太陽電池の外観写 真と被覆前後の電流電圧曲線を、表②-(1)-4-2.1 に被覆前後の電池特性を示す。この結果か ら、被覆層を形成することで太陽電池の変換効率が向上していることが分かる。これは、 被覆層による光捕集効果による効果に加え、上部透明電極と補助電極間の接触不良が改善 されていることが原因と考えられる。また、素子作成条件の最適化を行った結果、これま でに報告されているもの²⁹と同等以上の性能を持つ繊維型太陽電池作製が可能となって いる。図②-(1)-4-2.2 には本項目で作製した繊維型太陽電池の室内照明下における電流電圧 曲線を示す。この結果から平均して1本当たり3µWの出力を得られることを確認してい る。

被覆材料のガスバリア性評価の結果、アクリル樹脂被覆を行った素子は2週間後の時点 で被覆なしの素子と比較して性能維持率に40%以上の差が見られた。また、PET 基材間 に柔軟なシリカ層を挿入した材料の水蒸気透過度は、一般的な熱可塑性樹脂のおよそ1000 倍のバリア性となっていた。さらに、アクリル樹脂層上にパリレンコーティングを施すこ とでガスバリア性が向上することを確認しており、有機-無機複合による更なる長寿命化の 見込みが得られている。

図②-(1)-2-4.1 (a)被覆後繊維型太陽電池外観、(b)被覆前後の電流電圧曲線

表②-(1)-2-4.1 被覆前後繊維型太陽電池素子の擬似太陽光照射下における太陽電池特性

試料	Voc [V]	Jsc [mA/cm ²]	FF	PCE [%]
被覆前	0.47	6.6	0.35	1.1
被覆後	0.56	12	0.46	3.0

図②-(1)-2-4.2 被覆後繊維型太陽電池の室内照明下での電流電圧曲線

②-(1)-5 自立電源搭載技術の開発【住江織物(株)】

電源仕様の最適化を図るために、センサ利用環境中の光エネルギー量を測定した。図② -(1)-5.1(a)の実証環境(スマートオフィス)における光照射量測定結果を示す。実証環境下 ではセンサ設置場所にかかわらず、照度 400 lx 以上を確保することが可能であることがわ かった。さらに、図②-(1)-5.1(b)より実証環境下で自立電源センサ端末が使用可能な光のス ペクトルを確認したところ、開口部条件を窓ガラスのみにした場合の蛍光灯+太陽光では、 波長 400 nm~800 nm までの可視光領域の光を発電に利用できることを確認した。

また、開口部条件が窓ガラス+カーテン・ブラインドの場合の蛍光灯のみでも、可視光 領域の光を発電利用可能だが、波長は400 nm~700 nm までであった。 以上より、実証環境下でセンサ端末駆動させるための自立電源としては、室内照度 400 lx 以上で駆動し、かつ、可視光領域の光スペクトルを利用できる太陽電池の開発が求められ る。

図②-(1)-5.1 (a)実証環境下での最低照度, (b)実証環境下での光スペクトル

②-(1)-6 まとめ

室内光源に適した光吸収特性と起電力の向上を可能にする有機半導体材料の開発と有 機半導体ナノファイバー構造を利用した有機薄膜太陽電池の低照度最適化によって、5× 2cm サイズで出力 150μW 以上の目標を達成した。さらに蓄電機能を備えた電源モジュール としての開発を進めた。開発した自立電源は照度 2001x からの駆動が可能であり、実証場 所であるスマートファクトリ(植物工場)において、完全無給電でワイヤレスセンサ端末 の昼夜間連続の安定動作を可能にした。

さらに、大気圧条件下・全塗布プロセスによる繊維型有機薄膜太陽電池の作製技術およ び布帛技術を確立し、これまでにない有機薄膜太陽電池のフレキシブル化を実現した。今 後自立電源をモバイル・ウェアラブル電源として展開するためには、電源回路基板のフレ キシブル化を進めていく必要がある。

2-(1)-7 参考文献

- 1) M.Hiramoto, H.Fujiwara, M.Yokoyama : "Three-layered organic solar cell with a photoactive interlayer of codeposited pigments", Applied Physics Letters, 58, 1062 (1991)
- 2) M.Hiramoto, H.Fujiwara, M.Yokoyama : "p-i-n like behavior in three layered organic solar cells having a co-deposited interlayer of pigments", Journal of Applied Physics, 72, 3781 (1992)
- 3) G. Yu, J. Gao, J, C. Hummelen, F. Wudl, A. J. Heeger: "Polymer Photovoltaic Cells: Enhanced

Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions" 、Science Vol. 270 no. 5243 pp.1789-1791 (December 1995)

- 4) Jin Young Kim, Kwanghee Lee, Nelson E. Coates, Daniel Moses, Thuc-Quyen Nguyen, Mark Dante, Alan J. Heeger: "Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing", Science, Vol. 317 no. 5835 pages. 222-225 (July 2007)
- 5) Akinobu Hayakawa, Osamu Yoshikawa, Takuya Fujieda, Kaku Uehara and Susumu Yoshikawa : "High performance polythiophene/fullerene bulk-heterojunction solar cell with a TiOx hole blocking layer" , Applied Physics Letters, Vol.90 Issue.16, 163517 (2007)
- 6) P. Schilinsky, C. Waldauf, C. J. Brabec: "Recombination and loss analysis in Polythiophene Based Bulk Heterojunction Photodetectors", Applied Physics Letters, 81, pp.3885-3887 (2002)
- 7) J. Y. Kim, S. H. Kim, H. -H. Lee, K. Lee, W. Ma, X. Gong, A. J. Heeger: "New Architecture for High-Efficiency Polymer Photovoltaic Cells Using Solution-Based Titanium Oxide as an Optical Spacer" Advanced Materials, Vo.18, Issue.5, pages.572-576 (2006)
- 8) Joo-Hyun Kim, Jong Hwan Park, Ji Hwang Lee, Jong Soo Kim, Myungsun Sim, Chiyeoung Shim and Kilwon Cho : "Bulk heterojunction solar cells based on preformed polythiophene nanowires via solubility-induced crystallization", Journal of Materials Chemistry, 20, 7398-7405 (2010)
- 9) 塚田捷、"仕事関数"、共立出版(昭58)
- Michael Vosgueritchian, Darren J. Lipomi, and Zhenan Bao: "Highly Conductive and Transparent PEDOT:PSS Films with a Fluorosurfactant for Stretchable and Flexible Transparent Electrodes", Adv. Functional Mater., 22, pp. 421-428 (2012)
- Yong Hyun Kim, Christoph Sachse, Michael L. Machala, Christian May, Lars Müller-Meskamp, and Karl Leo: "Highly Conductive PEDOT:PSS Electrode with Optimized Solvent and Thermal Post-Treatment for ITO-Free Organic Solar Cells", Adv. Functional Mater., 21, pp. 1076-1081 (2011)
- 12) R. B. H. Tahar, T. Ban, Y. Ohya, Y. Takahashi, "Tin doped indium oxide thin films: Electrical properties" J. Appl. Phys., 83, 2631-2645 (1998)
- 13) Yi-Ming Chang, Chih-Ping Chen, Jau-Min Ding, Chi-Yi Leu, Mei-Ju Lee, Ru-De Chen
 "Top-illuminated organic solar cells fabricated by vacuum-free and all-solution processes", Solar Energy Materials & Solar Cells, 109, pp. 91–96 (2013)
- 14) D.Liu, M.Zhao, Y.Li, Z.Bian, L.Zhang, Y.Shang, X.Xia, S.Zhang, D.Yun, Z.Liu, A.Cao and
 C. Huang: "Solid-State, Polymer-Based Fiber Solar Cells with Carbon Nanotube Electrodes", ACS Nano, 6 (12), pp 11027–11034 (2012)

- A.Bedeloglu, A.Demir, Y.Bozkurt, N.S.Sariciftci: "A Photovoltaic Fiber Design for Smart Textiles", Textile Research Journal, vol. 80 no. 11 1065-1074 (2010 July)
- 16) M.K.Singh: "Flexible Photovoltaic Textiles for Smart Applications," Solar Cells New Aspects and Solutions, Prof. Leonid A. Kosyachenko (Ed.), InTech, (2011)
- 17) 今井孝彦:高速ダイコーティングを応用した薄膜製膜法による光電変換素子形成、筑 波大学大学院博士課程 数理物質科学研究科博士論文、(平成 25)
- 18) 斉藤三長、大岡春日、細矢雅弘:低コストと高性能を実現する有機薄膜太陽電池技術、
 東芝レビュー Vol.67 No.1、P.30-33 (2012)
- 19) 森教安、野島直典、山本剛宏、中村喜代次:高分子流体のディップコーティングにおける膜厚に対する引き上げ速度とレオロジー特性の影響、繊維機械学会誌 56(6)、 T21-T26、(2003)
- 20) 最新透明導電膜動向: 材料設計と製膜技術・応用展開、情報機構(2005)
- Z.Zhang, Z.Yang, Z.Wu, G.Guan, S.Pan, Y.Zhang, H.Li, J.Deng, B.Sun, H.Peng: "Weaving Efficient Polymer Solar Cell Wires into Flexible Power Textiles", Adv. Energy Mater. Vol.4, issuel1 (2014)
- 22) 「テキスタイルデザイン[1]:ボディの設計」、第三章:織物の構造と表現、繊維産業構造改善事業協会、(平成9年3月)
- 23) Alexandre M. Nardes, Andrew J. Ferguson, James B. Whitaker, Bryon W. Larson, Ross E. Larsen, Klára Maturová, Peter A. Graf, Olga V. Boltalina, Steven H. Strauss and Nikos Kopidakis : "Beyond PCBM: Understanding the Photovoltaic Performance of Blends of Indene-C60 Multiadducts with Poly(3-hexylthiophene)" 、Advanced Functional Materials、Vol. 22, Issue 19, pages 4115–4127 (October 2012)
- 24) Hyunbum Kang, Chul-Hee Cho, Han-Hee Cho, Tae Eui Kang, Hyeong Jun Kim, Ki-Hyun Kim, Sung Cheol Yoon, Bumjoon J Kim: "Controlling Number of Indene Solubilizing Groups in Multiadduct Fullerenes for Tuning Optoelectronic Properties and Open-Circuit Voltage in Organic Solar Cells" ACS Applied Materials & Interfaces, 4 (1), pp 110–116 (2012)
- 25) Ji Sun Moon, Jang Jo and Alan J. Heeger : "Nanomorphology of PCDTBT:PC70BM Bulk Heterojunction Solar Cells", Advanced Energy Materials, Volume 2, Issue 3, pages 304–308 (March 2012)
- 26) Jian Liu, Shuyan Shao, Gang Fang, Bin Meng, Zhiyuan Xie and Lixiang Wang : "High-Efficiency Inverted Polymer Solar Cells with Transparent and Work-Function Tunable MoO3-Al Composite Film as Cathode Buffer Layer", Advanced Materials, Volume 24, Issue 20, pages 2774–2779 (May 2012)

- 27) Yongye Liang, Zheng Xu, Jiangbin Xia, Szu-Ting Tsai, Yue Wu, Gang Li, Claire Ray and Luping Yu : "For the Bright Future—Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4%" 、Advanced Materials, Volume 22, Issue 20, pages E135–E138 (May 2010)
- 28) Sylvia J Lou, Jodi M Szarko, Tao Xu, Luping Yu, Tobin J Marks, Lin X Chen : "Effects of additives on the morphology of solution phase aggregates formed by active layer components of high-efficiency organic solar cells", Journal of American Chemical Society, 133(51), pages20661-20663 (2011)
- 29) M.R.Lee, R.D.Eckert, K.Forberich, G.Dennler, C.J.Brabec, and R.A.Gaudiana: "Solar Power Wires Based on Organic Photovoltaic Materials", Science, 324 (5924), 232-235 (2009)

②-(2) 超小型高効率屋内用自立電源システムの開発【ローム(株)】

(2)-(2)-1 研究開発の背景と目標

<研究開発の背景>

今後、普及が見込まれる無線センサネットワークは、BEMS/HEMS といった省エネ用途 だけで無く、インフラ、物流、農業、健康、医療といった分野でも、その実現が期待され ており、IoE (Internet of Everything) やクラウドの更なる発展にも欠かせない技術である。 しかしながら、これまでの無線センサネットワークは、電池駆動ないし電源駆動であった 為、利用範囲は限定的であり、電池交換やメンテナンスが必要で、特に電源駆動の場合、 あとから設置する事が高額な工事費やテナントでのオーナーの許可を要する等、容易では ない点が普及を妨げる要因となっていた。

そこで、現在の有線電力供給、電池駆動に代えて、周囲環境から電力を生み出すエナジ ーハーベスティングデバイスを電力源として、屋内照明下でも効率よく発蓄電可能な自立 電源を開発する事で、メンテナンスフリーなグリーンセンサネットワーク端末を実現する。

<研究開発の目標>

本研究開発では、まず、エナジーハーベスティング用発電デバイスとして室内光向け発 電デバイス(色素増感型室内光電池、DSC)を、センサネットワーク用キャパシタとして 電気二重層キャパシタ(EDLC)を開発し、それらからなる発電・蓄電モジュールにDC/DC コンバータ等から構成される電源回路を組み合わせた超小型高効率屋内用自立電源を開発 する。その上で、研究開発項目①で開発されるグリーン MEMS センサと、マイコン及び無 線通信デバイスへの電力供給可能な自立電源駆動グリーンセンサネットワーク(GSN)端 末を試作し、研究開発項目③の中小スマートオフィス実証に提供する事で省エネ 10%達成 を協働で達成する。

すなわち、温度 5~35℃、室内照明下等研究開発項目③の実証実験で設定する環境下で、 GSN 端末に必要な電力供給として、平均出力 150 µ W 以上の電力供給が可能な発電・蓄電 一体型デバイスを開発する。

本プロジェクトで開発する上述の自立電源の構成模式図を図②-(2)-1.1 に示す。室内光は 太陽光に比べて非常に微弱である事(環境にもよるが、室内光の放射照度量は太陽光下の およそ 1/100~1/1000)から、得られる電流量が極めて微量である。その為、如何にして発 電した電流をロス(逆電流)させないかが重要であるので、低逆電流 DSC を開発する。ま た、センサネットワーク用蓄電デバイスとして、EDLC を採用したのは、無線送信に必要 な数 10mA オーダーの電流を瞬間的にでも引き出すには、内部抵抗の高い蓄電池では困難 である事、また室内用自立電源として低価格化を実現するべく、部品構成をシンプルにす る事に起因する。ただし、EDLC の低リーク電流化が必要となる。これらから構成される 発電・蓄電モジュールからの発電量を、昇圧型 DC/DC コンバータないし降圧型 DC/DC コ ンバータを用いた電源回路により、3V ないし 1.8V 出力の自立電源を開発する。

図②-(2)-1.1 GSN プロジェクトで開発した自立電源のイメージ図

②-(2)-2 エナジーハーベスティング用発電デバイス(DSC)の開発

本プロジェクトの実証実験は屋内を想定しており、屋内光を効率良く電力に変換出来る エナジーハーベスタが必要である。蛍光灯や LED 照明のような屋内光はその波長分布(ス ペクトル)が可視光域内に分布している事から、可視光感度の高いエナジーハーベスタと して、本要求に最も適しているのが有機系太陽電池の一種である色素増感型室内光電池 (DSC)である。DSC は光を電力に変換する役割を果たす色素(後述)が可視光域に高い

感度を持っており、この要求を満たす。

図②-(2)-2.1 に、発電デバイス(DSC)の断面構造と発電サイクルの概略図を示す。DSC は素子内部に色素を担持したナノポーラスな TiO₂(酸化チタン)膜が形成されているのが 特徴である。これにより室内光のような低照度環境下であっても、入射光をより多く吸収 し、電荷生成する事が出来る。より具体的には、TiO₂に吸着した色素分子の光吸収にて発 生する電子が TiO₂膜を経由して透明電極へ到達し、外部付加を経由して対抗電極から電解 液に再注入されるのが一連の発電サイクルである。であるので、電解液の特性も発電特性 に大きく効く事となる。

図②-(2)-2.1 発電デバイス(DSC)の断面構造と発電サイクルの概略図

ところで、DSC の素子内部に含まれる電解液による電荷輸送・交換作用があるが、その 作用により、色素から発生した電子が電解液中に逆流してしまう可能性もある。そこで逆 流防止機能を付与する為に、図②-(2)-2.2 に示すように、透明導電膜上に薄膜のバリア膜を 成膜する技術を検討した。これにより、発生した電荷が電解液中に逆流するのを防ぎ、DSC の発電特性を向上させる事が出来た。

図2-(2)-2.2 DSC の逆リーク電流低減対策

また、DSCの電解液には電荷を上手く輸送・交換する働きが生じるように様々な添加物 を溶解させている。今回、我々はヨウ化物イオンと臭化物イオンが発生する様に添加物を 選定・配合調整し、最適化を図る事で最も DSC の発電特性(最大出力密度)が得られる条件を見出した。具体的には、図②-(2)-2.3 に示されるように、電解液中のヨウ化物イオンと 臭化物イオンがそれぞれ 250mM の時に短絡電流密度(Jsc)を低下させずに、開放電圧(Voc) を高める事が可能で、最大出力密度が得られた。これは、DSC の Voc が TiO₂の伝導帯と 電解液の酸化還元準位(電位)の電子エネルギー差に支配され、ヨウ化物イオンより臭化 物イオンの酸化還元電位がポジティブである事に起因する。

図2-(2)-2.3 DSC の光起電力向上対策

更に、室内光のような低照度環境下において、外から入る入射光をより効率良く取り入 れて発電特性の向上を図る為に、図②-(2)-2.4 の左図に示すように、入射光側の DSC のガ ラス基板上に低反射フィルムを貼り付けた。結果として、右図のように発電特性に寄与す る可視光域の波長の光を約 4%向上させる事を確認し、実際に、光電変換効率(Incident Photo-to-Current(Conversion) Efficiency、IPCE)として約 3%向上する事を確認した。

図2-(2)-2.4 DSC の光電流向上対策

図②-(2)-2.5 は DSC の発電特性の見方を示している。縦軸には DSC から得られる電流値
 (I)、或いは電力値(P)を、横軸には電圧値(V)を示しており、DSC の最大出力値が
 得られる点を最大出力点(P_{max})という。

図2-(2)-2.5 発電特性(IV 特性)の見方

図②-(2)-2.6 は本プロジェクトで試作した DSC モジュールの一例である。4 セル直列構造(4 直)で、サイズは 20mm×50mm に制限しており、赤褐色部が、光吸収色素を担持した TiO₂を示している。

図②-(2)-2.6 試作した自立電源搭載用 DSC モジュールの外観

図②-(2)-2.7 は、今回試作した 4 直 DSC モジュールの発電特性の一例である。評価に使用した光源は一般的な屋内向けの蛍光灯であり、その照度は 500 ルクスで統一している。 先に示した電解液中の添加物濃度の最適化及び、低反射フィルムの貼り付け効果による光 電変換効率等の効率改善により、DSC の最大出力密度が 21.9uW/cm²→24.7uW/cm² と 12.6% も向上した事を示している。

図②-(2)-2.74 直 DSC モジュールの発電特性の一例

このように DSC の発電特性の改善を行いつつ、本プロジェクトで想定した温度範囲である 5℃~35℃で発電特性に関しては、試作した DSC の発電特性の温度依存性を評価した。 図②-(2)-2.8 は DSC の IV 特性の結果であり、横軸に DSC の電圧値、縦軸に電流密度値を 取っている。測定環境温度は0℃~40℃である。

図2-(2)-2.8 DSC の発電特性の温度依存性(1)-IV 特性-

図②-(2)-2.9 は、図②-(2)-2.8 の IV 特性における、短絡電流密度(Jsc)、開放電圧(Voc)、 形状因子(FF)、最大出力密度(Pmax)である。DSC は低温環境になる程、Voc が増加す る傾向が確認されたが、Jsc に関しては環境温度依存性が殆ど無く、温度変化に対して DSC の Pmax は大きく変化しない事を確認した(25℃に対して5℃で4%増、35℃で4%減)。

図②-(2)-2.9 DSC の発電特性の温度依存性(2)-Jsc/Voc/FF/Pmax-

②-(2)-3 センサネットワーク用キャパシタ (EDLC)の開発

本プロジェクトのセンサネットワーク用蓄電デバイスとして、EDLC を採用したが、図 ②-(2)-3.1 にその位置付けを示す。EDLC は、そのエネルギー密度は低いものの、内部抵抗 が低く出力密度が高く、シンプルな無線センサ端末における無線送信に適合している。

図2-(2)-3.1 センサネットワーク用キャパシタ(EDLC)の位置付け

図②-(2)-3.2 に EDLC における充放電のメカニズムを示す。EDLC セルに注入されたイオンが活性炭(活物質)に吸着し、電気二重層を形成する事で充電される。一方、活性炭表面から吸着されたイオンが脱離する事で放電が起こる(電流を取り出せる)。

図2-(2)-3.2 EDLC の充放電模式図

EDLC をセンサネットワーク用の電源として用いるにあたり、無線出力等、高負荷なデ バイスを動作させる為、高出力を EDLC から取り出す必要がある。また、センサノードの 小型化が要求される為、高容量(大型)の EDLC を搭載することが出来ない。一般的な EDLC は小容量であると、内部抵抗が高くなる。これは特性が同じ EDLC であれば、RC 時定数 が一定となり、大容量の EDLC であればデバイス体積が大きくなるデメリットはあるが、 内部抵抗が低くなり、大電流を引き出すことができる(高出力を取り出せる)。

一方、小容量の EDLC であるとデバイス体積は小さくコンパクトになるが、内部抵抗が 高くなり大電流を引き出す事ができなくなる。よって、本研究ではこの時定数を可能な限 り小さくすることを目標に開発を進めてきた。センサノード端末で高出力を要求されるデ バイスとして無線送信が挙げられ、例えば、3V で約 50mA の電流を引き出す必要があり、 出力は約 0.15W となる。

ー方、小型で低背なセンサ端末の容積を考慮すると EDLC の容量は 1F が限界である。 この出力を EDLC から取り出す際、EDLC の電圧変動によるモジュールの不安定動作を防 止させる為、EDLC の電圧ドロップを 0.05V 以下に抑える必要がある。よって、EDLC の 内部抵抗を 1 Ω 以下にしなければならない。つまり、時定数 τ は、1F×1 Ω =1 Ω F 以下の EDLC を作製する必要がある。

この条件を達成させる為、まず、EDLC の内部抵抗の成分に着目した。EDLC は図② -(2)-3.3 のように、活性炭内の電子電導や電解液中のイオン電導由来の「バルク抵抗」、ア ルミ集電極と活性炭間の電子電導由来の「界面抵抗」、最後の活性炭細孔内に存在するイ オンが電解液に拡散していく際のイオン電導に由来する「拡散抵抗」に分割できる。この 3 種類の抵抗の中で特に「界面抵抗」が非常に大きく(5.5mΩcm²)、残りの2つの抵抗成 分に比べ1桁近く高い。また、2番目に大きい「拡散抵抗」も低減させる必要がある。

176

図2-(2)-3.3 EDLC の内部抵抗解析法(交流インピーダンス測定)

同様に蓄電デバイスとして EDLC を用いるにあたり、電圧の長期間の維持が必要である。 せっかく蓄電しても、数時間で電圧が低下するようであれば使用出来ない。この要因は EDLC のリーク電流によるところが大きい。充電された EDLC の電圧で内部のリーク抵抗 を介してリーク電流が流れ、EDLC の電圧が少しずつ低下していくからである。本プロジ ェクトでは 24 時間の充電終了後、負荷を接続しない状態で更に 24 時間後の電圧が 90%以 上を保持する EDLC の開発を進めてきた。

図②-(2)-3.4 に内部抵抗低減とリーク電流低減に向けた実施事項を示す。

図②-(2)-3.4 EDLC の低抵抗化とリーク電流低減に向けた取り組み

まず内部抵抗の低減において、図②-(2)-3.4 の(2)の界面抵抗の低減を実施。界面抵抗が アルミ集電極の酸化被膜が誘電体として寄与し、容量抵抗が存在すると考察した。今回、 この酸化被膜を生じなくさせる為、あらかじめアルミ集電極にカーボン被膜を塗布し、被 膜が生じないようにした。結果、ほぼ界面抵抗を検出限界以下に抑制する事が可能となっ た。図②-(2)-3.4 の(3)の拡散抵抗は、活性炭塗布厚を 20µm 程度まで薄膜化して 60%近く 低減する事に成功した。要因としては、細孔の多い活性炭厚を薄くする事で、電解液への 充放電におけるイオン拡散が容易になった事と考えられる。最後に図②-(2)-3.4 の(1)のバ ルク抵抗の低減は、ロールプレス処理による活性炭同士の密着性向上による電子電導性の 向上や、赤外線乾燥によるアルミ集電極と活性炭の密着性向上による電子電導性の向上、 最後に真空ラミネート封止技術による真空と大気圧差による物理的圧着によるアルミ集電 極と活性炭との密着性向上による電子電導性の向上により、23%近く低減させることに成 功した。

また、リーク電流の低減では図②-(2)-3.4 の(4)のセパレータの緻密化と活性炭への導電 助剤のドライコート処理が挙げられる。セパレータの緻密化では、活性炭層から遊離した イオンが吸着した状態(充電状態)の導電助剤が対極に移動し、自己放電する事を防止す る。活性炭への導電助剤のドライコート処理では、そもそも活性炭から充電状態の導電助 剤が遊離しないようにする事で、自己放電を防止している。図②-(2)-3.4 の(1)では低抵抗 化にも寄与しつつ、真空と大気圧の差で電極を圧着状態にする事で、充電された活性炭が アルミ箔からの剥離する事を防ぎ、自己放電の低減に努めている。

これらの低抵抗化とリーク電流の低減化技術を導入することで、直流規格化抵抗を 7.0

178

Ω cm²から 1.2Ω cm² と大幅に内部抵抗を低減させ、電圧保持率は 81.5%から 93.0%へと向 上させる事に成功した。内部抵抗では図②-(2)-3.5の左図で見受けられるように半円の界面 抵抗を大きく低減させたことによる効果が大きい事がわかる。また、電圧保持率では充電 後 24h 後のリーク電流を約1桁低減させた事が要因である。

図②-(2)-3.5 EDLC のインピーダンス特性、及びリーク電流と電圧保持特性の改善結果

上述の EDLC の低抵抗化とリーク電流低減化の結果を以下の表②-(2)-3.1 に纏める。本 開発による低抵抗化かつリーク電流の低減により、EDLC がセンサネットワークに有用な 蓄電素子として採用出来る道筋を示す事ができた。

\square	低抵抗化結果			リーク電流低減化結果		
	バルク抵抗	界面抵抗	イオン拡散抵抗	リーク電流密度	電圧保持率	
改善前	0.80m Ω cm² 💊	5.53m Ω cm² 💊	0.61mΩcm² 💊	0.50 μ A/cm² 💊	81.5%	
改善後	23.7%DOWN	100%DOWN 検出限界以下	60.6%DOWN	90.0%DOWN 0.05 μ A/cm ²	14.1%UP 93.0%	

表②-(2)-3.1 改善前後の EDLC の内部抵抗とリーク電流

(2)-(2)-4 超小型高効率屋内用自立電源の結果

所定の電圧出力の自立電源を開発するにあたり、DSC で発電した電気を EDLC に蓄えた 後、DC/DC コンバータにより昇圧ないし降圧する事が必要となる。図②-(2)-4.1 は、試作 に先立って、試算した自立電源の出力の一例(3.3V 昇圧の場合)である。無線やマイコン の消費電力等は暫定値である。結論を述べると、DSC で 150 μ W を発電した場合、その電 圧値を 2V、電流値を 75μA に分配した場合、自立電源として最終的に得られる出力は 116 μW となり、トータルの効率は 77%となる。より高効率な自立電源を目指す為に、本プロ ジェクト内の端末 WG 等での議論を経て、中小スマートオフィス実証用の 3V 出力型自立 電源に加えて、1.8V 出力型自立電源も開発する事とした。

図2-(2)-4.1 自立電源の出力試算の一例(3.3V 昇圧の場合)

図②-(2)-4.2 は、試作した各種 DSC モジュールの発電特性を示している。DSC モジュー ルサイズは 20mm×50mm と制限しているが、その中でのセル数については、2 セルから 4 セルの設計で実際に試作を行い、その時の DSC モジュールの発電特性がどのようになるか を評価した。一般的に、セルを直列接続する場合、セル数が増えるにつれて開放電圧が増 加する。一方、DSC モジュールの発電流値は1 セル分の面積に依存する為、セル数が増え るにつれて逆に減少していく。更に、開発初期は DSC のセル面積がテストセル(5mm×5mm) に比べて大きい事から、透明電極の直列抵抗成分に起因した FF 値(発電特性のパラメー タの1つ)が低い事が問題であったが、各セルの周囲に Ag 配線を裏打ち配線として設置 する事で、直列抵抗成分を低下させる事に成功し、結果として FF 値も大幅に改善した。

図②-(2)-4.2 自立電源の発電特性(2直/3直/4直DSCモジュール)の改善

次に、試作したDSCモジュールについて最適設計を検討した結果を図②-(2)-4.3に示す。 DSCのセル数によって、自立電源モジュールからの出力値がどのように変化するのかを算 出した。セル数が少ない場合、得られる電流は大きいものの電圧が低い為、最終的な自立 電源モジュールの出力電圧(1.8V/3.0V)に合わせる為に昇圧が必要となる。目標電圧まで の昇圧率(目標電圧/発電電圧)が高い程、昇圧効率は低くなる傾向があり、結果として自 立電源の出力値(Pout)が小さくなる。逆に、セル数を増やすと目標電圧に近い分、昇圧 効率は増加するが、1 セル辺りの発電面積が小さくなるため電流値も少なくなり、自立電 源の出力値(Pout)も低下してしまう。

本プロジェクトの基本計画での開発目標は発電デバイスの発電量ではなく、それを構成 部品とした自立電源の出力値であるので、このようなトレードオフを解決する必要がある。 今回その最適化を図った結果、図②-(2)-4.3 のように4セル直列構造が最も自立電源モジュ ールとして出力値(Pout)を引き出せることが分かった。

図②-(2)-4.3 3V 出力型自立電源の出力シミュレーション

今回、得られた DSC セル数と自立電源の出力値 (Pout)の関係を示したのが表②-(2)-4.1 である。開発初期の DSC における発電特性をベースにしているが、4 セル直列構造にした時に、照度 500 ルクス環境下で自立電源モジュールは最大 129.6uW の出力値が得られる事になる。なお、4 セル直列構造の場合でも自立電源モジュールの出力電圧 (3.0V) は引き出せないため昇圧回路は導入している。この昇圧効率は 82%程度であった。

DSC モジュール	• V _{op} (V) • I _{op} (uA)	• V _{in} (V) • I _{in} (uA)	昇圧効率(%) (仕様)	最大 I _{out} (uA)	P _{out} (uW) (自立電源として)
2直型 (実測)	• <u>1.04V</u> • 181uA	• <u>0.90V</u> • 181uA	<u>67.8%</u>	<u>36.8uA</u>	<u>110.4uW</u>
3直型 (実測)	• 1.46V • 114uA	• 1.32V • 114uA	<u>76.4%</u>	<u>38.3uA</u>	<u>114.9uW</u>
4直型 (実測)	• 2.02V • 84.0uA	• 1.88V • 84.0uA	82.0%	43.2uA (最大値)	129.6uW (最大値)
5直型 <予測>	• <u>2.14V</u> • 70.3uA	• <u>2.00V</u> • 70.3uA	<u>82.7%</u>	38.8uA	<u>116.4uW</u>

表②-(2)-4.1 3V 出力型自立電源の出力シミュレーションの一例

図②-(2)-4.4 には、我々が試作した DSC の中で最も発電特性が良好だったものの結果を 示している。DSC 単体の最大出力値は照度 500 ルクス環境下で 196uW であり、この結果 を踏まえて自立電源に展開した場合、1.8V 出力電圧の場合は自立電源として 166.1uW、出 力電圧 3.0V の場合は 150.7uW、と、いずれも本プロジェクトの開発目標を上回る結果とな った。なお、1.8V 出力電圧の場合に最大出力値が高くなったのは、昇圧回路に比べて効率

図②-(2)-4.4 自立電源システムの最適化と発電デバイスの発電量増大

図②-(2)-4.5 は今回試作した 3V 出力型自立電源の構成を示している。発電素子である DSC から蓄電素子の EDLC に充電し、目標電圧になった時点から 3V に昇圧する仕組みで ある。右のグラフは EDLC の充電電圧の変化を示している。目標電圧になった時点で 3V への昇圧が確認出来た。

図2-(2)-4.5 3V 出力型自立電源の充電特性の一例

一方、図②-(2)-4.6 は今回試作した 1.8V 出力型自立電源の構成を示している。3V 出力型 自立電源と同じく DSC から EDLC に充電し、目標電圧になった時点から 1.8V に降圧する 仕組みである。右のグラフは EDLC の充電電圧の変化を示している。目標電圧になった時 点で1.8Vへの降圧が確認出来た。

図2-(2)-4.61.8V 出力型自立電源の充電特性の一例

図②-(2)-4.7 は、本プロジェクトで最初に試作した評価用の自立電源駆動無線センサネットワーク(WSN)端末である。センサとしては既製品の温度センサを搭載し、2.4GHzの周波数の無線を用いた。

図②-(2)-4.7 自立電源駆動 WSN 端末(2.4GHz, 温度センサ)

図②-(2)-4.8 は、上述の WSN 端末を完全に放電させた後に充電させた動作させた時の入 力電力条件として、1 セルの DSC を想定し、電源回路に電流/電圧=300 µ A/0.5V で駆動さ せた時にかかる充電時間と、DC/DC コンバータが動作するときの電圧プロファイルとなる。 DC/DC コンバータが安定して昇圧するためには、20 分近くかかった。DC/DC コンバータ が昇圧するとき、高い電力が必要となるので、出力が取れるキャパシタが重要なデバイス となる。安定して昇圧がなされた後の動作であるが、無線送信動作で電力を消費するため キャパシタの電圧が降下する。図②-(2)-4.8 の下のグラフでは、無線送信動作による電圧の 降下後、DSC による発電により元の電圧までキャパシタへの電荷供給がなされていること が分かる。エナジーバジェットの概念として、このように電圧が降下しても、エネルギー が供給されるシステムを自立電源では構築していかなければならない。

図2-(2)-4.8 自立電源駆動 WSN 端末(2.4GHz, 温度センサ)の充電特性

(2)-(2)-5 中小スマートオフィス実証用自立電源駆動 GSN 端末と GCON 受信機の開発

センサネットワーク向け無線通信を行うに当たり、150uWの消費電力で送信動作を達成 しなければならない。今回、我々は消費電力が少ない 920MHz 帯の特定小電力無線の採用 を考えた。まず、実際にセンサデータが受信機に対して送信されるかを実証する為、既存の「温度センサ」、「湿度センサ」、「照度センサ」、「圧力センサ」の4種類のセンサデータを150µWの自立電源にて送信した。センサパケットとしては合計10byte程度の小さなデータ容量である。センサネットワーク環境としては、図②-(2)-5.1で示したように受信機1台に対し、20台のセンサ端末(送信機)の関係性にて実証を行った。また、送信システムとして1分間の中で20台のセンサ端末がどの時間で送信するかを割り当てることで無線の混線を防止する対策を施している(例:センサ①→○○分00秒、センサ②→○○分03秒、・・・、センサ⑳→○○分57秒等)。結果、混線する事なく、蛍光灯500ルクス下で連続無線送信を継続する事が照明された。

図②-(2)-5.1 自立電源駆動 WSN 端末(920MHz, 温度/湿度/照度/圧力センサ)

次にオフィス環境での省電力化で用いる、赤外線アレーセンサを搭載した図②-(2)-5.2 で 示したセンサ端末での実証を実施した。人検知に用いられる赤外線アレーセンサでは、デ ータ内容がマトリックスデータを含んでいる為、110byte 程度の大きなデータ量を送信する ことと、人検知の際のアルゴリズム解析を行う事から、消費電力が大きくなる。このシス テムで連続動作を達成する為には、無線送信側でも可能な限り消費電力を低減させる必要 がある。目標としては、150 µ W の電力に対し、無線送信動作の電力を 50 µ W 以下にする 事を目標とした。

図②-(2)-5.2 自立電源駆動 GSN 端末(920MHz,赤外線アレー(IRA)センサ)

無線送信における低消費電力化を達成するに当たり、図②-(2)-5.3 で示したように送信動 作時の消費電流をオシロスコープにて測定した。送信時の一連の動作は、「PLL 発振⇒キ ャリアセンス (CCA) ⇒無線送信⇒Ack 動作⇒スリープモード」となっている。本研究で は可能な限りシステム上で不要な動作を削除し、消費電力の低減に努めた。結果として、 無線送信動作に 184 μ W 消費していたところ、改善により 41 μ W まで低減し目標の 50 μ W 以下の消費電力まで低減する事に成功した。

無線送信電流プロファイルと消費電荷量 (センサデータのUARTによる通信時の消費電荷量含む)

図2-(2)-5.3 自立電源駆動 GSN 端末(920MHz)の無線の低消費電力化

上記無線動作における消費電力の低減を対策したうえで、図②-(2)-5.4 で示したセンサ端 末(赤外線アレーセンサ)を中小スマートオフィス内に設置し実証実験を行った。設置状 況は1台の GCON に対し41台のセンサ端末を蛍光灯下に設置した。

図2-(2)-5.4 中小スマートオフィス実証の様子(920MHz, 赤外線アレー(IRA)センサ)

図②-(2)-5.5 は試作した自立電源の充放電特性を示している(電圧は EDLC の電位を示 す)。自立電源モジュールの出力に対して、赤外線アレーセンサ/無線/マイコンを無負荷 状態(電源回路のみの駆動負荷)にして、3V 昇圧後も6時間光を当て続けて EDLC をフ ル充電した後、光照射を停止した場合の EDLC の自然放電の結果が左図である。一方、右 図は、無負荷状態は同じであるが、3V 昇圧直後に光照射を停止した場合の結果である。左 図のように、昇圧後も光照射を継続し、EDLC がフル充電された場合(2.37V)は 33,520 秒後に昇圧機能が停止するが、昇圧後すぐ光照射を停止した場合は708秒に昇圧機能が停 止した。これらはいずれも昇圧に伴い EDLC に充電している電荷量が少なくなり、EDLC 電圧が所定の電圧を下回った為に起こった現象である。

図②-(2)-5.5 GSN 端末(920MHz, 赤外線アレー(IRA)センサ)の自立電源特性(1)

一方、図②-(2)-5.6 は自立電源の充放電特性を示しているが、図②-(2).28 の結果と異なり、 充電すると同時に自立電源からの出力にて赤外線アレーセンサ/無線/マイコンも駆動した (負荷あり)状態の結果である。

無負荷の状態とは異なり、左図のように昇圧後、光照射を続けても EDLC はなかなかフ ル充電されない。6 時間の照射でようやくフル充電(2.37V)されても、光照射を停止した 後、1,160 秒で昇圧機能が停止した。無負荷状態と比較すると約 1/30 に時間短縮されてい る。右図のように昇圧後すぐに光照射を停止すると、更に時間が短く 126 秒で昇圧機能が 停止した。

本プロジェクトで得られた課題として、屋内施設において、夜間や休日等で照明が点灯 しない場合、本結果と同じ状態になる事が予想される。自立電源を用いたセンサネットワ ークシステムの実用化を検討する場合は、このように発電素子に光が照射されなくても比 較的長時間に渡って(ユーザのニーズに依存)、無線センサ端末を駆動し続ける事が出来 るような、更なる蓄電回路システムを設ける必要があると考えられる。

図②-(2)-5.6 GSN 端末(920MHz,赤外線アレー(IRA)センサ)の自立電源特性(2)

具体的に検証してみると以下のようになる。現状 1Fの EDLC が 3V 昇圧可能な最低電圧 (約 1.9V)の状態から消灯後、IRA センサの連続駆動は約 5min 程度である(EDLC 電圧 が 1.8V 以下になると昇圧が停止し電源が落ちる設計)。最長の消灯時間となり得る土日で は、実質 48 時間 DSC での発電がなされない事となる。

よって、土日の連続動作に要求される EDLC の必要容量は、

 $48(h) \times 60(min/h) / 5(min/F) = 576(F)$

となる。1Fの EDLC の電極体積が 0.36cm³ (=1.2cm×1.5cm×0.2cmt)であることから、576F の EDLC の体積は 207.36cm³ (= 2cm×5cm×20.7cmt) となり、センサノードの体積が非常 に大きくなり、ほぼ EDLC で占められる。また、今回開発した EDLC は IF で 1 μ A 以下と 非常にリーク電流を抑えた素子となっているが、容量を上げるとリーク抵抗も並列で増え ていくので、576F のリーク電流は 576 μ A と予測される。

照度 500 ルクス、出力 150 μ W の自立電源において、DSC の発電電流が最大効率で 84.0 μ A でしか得られない為、全てがリーク電流として消費され EDLC への蓄電が不可能である。もし、蓄電可能な状態にする場合は、3,428 ルクス以上が必要である。また、約 2 倍の 7,000 ルクスの照度で得られる発電電流量 1,176 μ A からリーク電流で消費される分を除いた、残り 600 μ A が EDLC 充電に寄与する場合の 576F への満充電時間は、1.8V から 1.9V で EDLC 電圧が変動すると仮定して、

 $576(F) \times 0.1(V) / 600(\mu A) = 96,000(sec) \sim 27(h)$

となる。この状態では1日以上光を当て続ける必要があり、オフィス環境ではこのような 状況を作り続けることは厳しい。

上述を纏めると、赤外線アレーセンサを土日連続運転させる為には、

- (i)赤外線アレーセンサモジュールの消費電力を現状の 1/100 程度に抑える
 →EDLC 容量を現実的な 5F まで小さく出来る
- (ii)発電素子に与える照度を28,000 ルクスにあげる
 -8時間程度の光照射で満充電させる為、7,000 ルクスの約4倍の照度が必要
- (iii) 耐久性の高い電池を併用する
 →電池は EDLC に比べ 2 桁以上の高容量密度なので、蓄電素子体積を 1/100 に

②-(2)-6 まとめ

抑える事が出来る

今回、本プロジェクトでロームが開発した自立電源は、光発電エナジーハーベスタとし て DSC(色素増感型太陽電池)を、キャパシタとして EDLC(電気二重層キャパシタ)を 採用し、電源回路の開発と最適化を図る事で、屋内環境で世界最高レベルの平均出力の自 立電源(蛍光灯 500 ルクス環境下で平均出力が 150 µ W 以上の 2cm×5cm サイズの自立電 源)を開発した。これは、他社開発品と比べて 2 倍以上の平均出力(20uW/cm²@蛍光灯 500 ルクス)である。

さらに、特定小電力無線(920MHz)及び低消費電力マイコンを活用し、①-(5)でオムロンが開発した人数検知機能を有する赤外線アレーセンサ(IRA センサ)を搭載した自立電源駆動のグリーンセンサネットワーク(GSN)端末を開発すると共に、②-(7)でNTT データが開発したグリーンコンセントレーター(GCON)用の受信機の開発も手掛け、NTT データの GCON とクラウド技術を用いて、ダイキン工業のアプリケーション(③-(2)-i)参照)

にて、オフィス内の人数に合わせた空調制御を実現する省エネ10%以上の実証に協働した。

本 GSN 端末は自立電源を用いている為、オフィス等へ後から設置可能であり、電源工事 が不要であり、電池交換も不要なメンテナンスフリーとして、新規物件だけでなく、既存 の中小オフィスへの展開が期待される。また、今回、実証に用いた IRA センサ以外にも、 多様なセンサを搭載する事で、様々な社会の要求を実現出来る可能性がある。実際に、本 プロジェクト内にて、横河電機の電流・磁界センサ(①-(1)参照)、セイコーインスツルの塵 埃量センサ(①-(2)参照)、オムロンの CO₂ 濃度センサ(①-(3)参照)の実証にも貢献すると共に、 産総研・マイクロマシンセンターのウェハレベルフレキシブル集積化技術の開発(②-(5)-2 参照)や日立製作所のエネルギーマネジメント LSI(②-(4)参照)の検証用としても開発した。

②-(3) フレキシブルクランプセンサの開発【産業技術総合研究所、(一財)マイクロマシンセンター】

(2-(3)-1 研究開発の背景と目標

<研究開発の背景>

現在、人口の急激な増加や、特に新興国における経済の急成長やインフラ整備・工業化な どにより、世界的にエネルギー消費量が飛躍的に増加しており、世界規模での省エネルギ ーが必要となっている。この問題に対して、電力に関しては、IT 技術によりリアルタイム なエネルギー需要を監視し、電力の供給を制御して最適化するスマートグリッドが注目を 集めている。この次世代電力供給システムを達成するためには、多量のセンサを用いてセ ンサネットワークを構築し、広範囲にわたる電力消費量の一括モニタリングを行う必要が あるため、高性能かつ安価で大量生産が可能な電流センサの開発が必須となっている。

従来、交流電流センサには、変流器、ロゴスキーコイル、ホール素子等の種類がある。 それぞれ動作原理や検出方式に違いはあるが、基本的には被測定電流によって電流路の周 囲に誘起される磁界を検出することで、電流を測定している。中でも、変流器(Current transformer, CT)構造の電流センサは比較的簡単な構成であり、高透磁率磁性材料を使用し た磁気回路(磁気コア)に導線でコイルを巻いたものである。CTの動作原理上、リニアな応 答性に優れ、また測定範囲が広いことも特徴としてあげられる。

CT 構造の電流センサを使用するには、上述した磁気コアによって被測定電流を挟み込 む構成とし、磁気コア中に流れる磁束を検出する必要がある。従って、既存の設備に導入 する場合は被測定電路を切断してセンサを挿入しなければならない。しかしながら、運転 が中断できない設備機器や、家庭やオフィスの受配電設備内の電線を切断することは非現 実的である。このような背景から、磁気コアの一部を脱着して被測定導体を中に挟み込む ことのできる、クランプ式の電流センサが現在広く使用されている。一方で、このような 脱着式の構造を有する必要性から、従来のクランプ式電流センサは最小のものでも 2cm 角 の立方体形状であり、受配電設備内等では敷設が難しいという問題がある。例えば、受配 電設備内等で敷設する場合、他の機器等も混在しているので、スペース制約が多い条件下 での作業が余儀なくされ、電流センサの取り付け作業効率が良いことが望まれる。電流セ ンサ全体がより小型化され、クランプ操作も容易になし得ること、しかも測定精度の正確 であることが重要な課題である。また、従来のクランプ式電流センサは、プラスチックの ケースなどで構成されているためクランプ可能な径が固定されており、ケーブルの太さご とに異なる仕様のものが必要であった。そこで、電線の太さごとに仕様の異なるセンサを 準備する必要がないような汎用性のある構造が、コスト面および作業性の面からも望まれ る。

192

また、センサネットワークを構成する多量の電流センサが、一定期間ごとに電池交換な どのメンテナンスを行う必要がある仕様だと、現実的でなく今後の普及は見込めない。従 って、広範囲にわたるセンサネットワークの構築を目指す場合は、システムの仕様として 自立電源を有することが望まれるが、電流センサの一般的な敷設場所は受配電設備内等で あり、光、振動、電波エネルギーが利用できない条件下も多い。

<研究開発の目標>

上記研究背景から、本研究開発目標としては、従来のクランプ式電流センサでは敷設の 難しかった、スペース制約の多い受配電設備内等にも容易に導入でき、光、振動、電波エ ネルギーが利用できない条件下であっても周囲のエネルギー源から給電可能な仕様とする ことでメンテナンスフリー(電池交換不要)とし、電流計測および計測電流値データの無線 通信機能を持つ、小型·フレキシブル電流センサおよびその高スループットな製造プロセス の開発である。開発する新規センサの実施計画上の目標値は次の通りである。

(1) 大きさ 20mm×50mm 以下のフレキシブルクランプセンサ

(2) 変換効率 3V/30A 以上

この他、今後国内外に広く普及させることのできるフレキシブルセンサとするために、以 下の自主的な目標値も設定した。

(3) 厚さ1mm以下

(4) 重量 2g 以下

(5) 1端末あたりの価格 100 円以下

これら研究開発目標値を満足できる電流センサとして、図②-(3)-1.1 に模式的に示すフィル ム型フレキシブルクランプ式電流センサを考案した。センサの基材をフィルム材料の構成 とすることで、大きさ 20mm×50mm×1mm 以下、重量 2g 以下を満足する仕様とし、また、 材料コストも低く抑えることができると考えられる。さらに、フォトリソグラフィや印刷 技術を用いてライン幅 50µm 以下の導電性微細パターンを形成することで、面積 20mm × 50mm のフィルム基材上においても 400 巻き以上のフレキシブルコイルを作製することが でき、また、高いフレキシブル性を備えたセンサであれば、センサ単体では低い出力であ ったとしても、センサ複数個を重ね合わせて使用することで出力を増加させることも可能 であるため、最小サイズの市販クランプ式電流センサの変換効率である 3V/30A も得られ ると考えられる。このようなセンサを作製するために、製造プロセスやシステム設計の開 発内容は以下となる。

- (1) フレキシブル基材上でのフレキシブルコイルの一体成形プロセスの開発
- (2) フレキシブルな薄膜磁気コアの一体成形プロセスの開発

(3) ワンタッチクランプ構造設計およびセンサの設置電路からの給電システムの開発

図②-(3)-1.1 開発目標のフィルム型フレキシブルクランプ式電流センサ

②-(3)-2 フレキシブルクランプセンサの設計・試作

前述のフレキシブルコイルを作製するためには、フィルム材料上に導電性の金属材料や ペースト材料を用いて微小なラインを形成し、磁性コアの周囲を旋回するような構造とす る必要がある。そこで開発内容(1)フレキシブル基材上でのフレキシブルコイルの一体成形 プロセスの開発として、フィルム基材の両側にマイクロ穴あけ技術により微細な貫通孔を アレイ状に形成し、めっきや印刷技術により導電性材料を充填させることで貫通配線とし、 それら貫通配線をフォトリソグラフィや印刷技術で形成した導電性材料の微細ラインパタ ーンで結ぶことで、磁性コアの周囲を旋回するコイル構造とすることを考案した。以下に、

- (1) めっきとフォトリソグラフィプロセス
- (2) 印刷プロセス
- (3) 印刷とフォトリソグラフィのハイブリッドプロセス

で設計・試作したフィルム型クランプセンサの詳細を記述する。

②-(3)-2-1 めっきおよびフォトリソグラフィ技術を用いたフィルム型クランプセンサの設計・試作

本研究開発では、初めにめっきによるマイクロ貫通孔の充填と、金薄膜のフォトリソグ ラフィによる微細パターン形成による、センサ製造プロセスの開発を行った¹⁾⁻⁴⁾。

まず、アレイ状のマイクロ貫通孔加工を検討し、センサの絶縁層として、耐熱性、対薬 品性に優れ、高い電気絶縁性も有するポリイミドフィルムを選択し、レーザ穴あけ、およ び打抜き(パンチング)穴あけ技術により穴あけ加工を行った。図②-(3)-2-1.1(a)にレーザ穴 あけ技術により厚み 125µm のポリイミドフィルムに 60µm ピッチでアレイ状に加工した径 20µm の貫通孔、図②-(3)-2-1.1(b)にパンチング技術により厚み 60µm のポリイミドフィル ムに 100µm ピッチでアレイ状に加工した径 60µm の貫通孔の顕微鏡像を示す。どちらの加 工においてもほとんどバリやカケは発生せず、高精度なマイクロ貫通孔を形成することが できた。

ここで、レーザ穴あけ加工は径 20µm 程度までの貫通孔であればさまざまなフィルム材 料で高精度に形成することができるが、パンチング加工では少なくともフィルムの厚さよ りも穴径が大きい場合でないと高精度な加工は難しく、また、脆いセラミック材料では用 いることができない。一方で、レーザ加工機は安いものでも数千万円し、数百万円で購入 できるパンチング加工機と比較すると設備導入に 10 倍近いコストが必要となる。従って、 加工対象となるフィルム材料の種類や、要求される穴径などを考慮して、加工方法を選択 することがセンサの量産に向けて重要となる。

次に、貫通孔を加工した厚み 125µm のポリイミドフィルムを用いて、コイル状電極パタ ーンを作製した。図②-(3)-2-1.2 にパターン作製プロセスを模式的に示す。まず、銅めっき のためのシード層として、スパッタ法により銅薄膜を 100nm 堆積させた。次に、銅めっき により貫通孔を充填させ、銅の貫通電極を形成した。その後、基材の表面、裏面ともに研 磨を行い、基材表面に堆積した余分な銅薄膜層を除去した。図②-(3)-2-1.3 に、銅めっきに より充填させた貫通孔の表面と断面像を示す。図②-(3)-2-1.3(b)の断面像からも、貫通孔に 銅が充填していることが確認できる。次に、コイル電極を形成するため、スパッタ法によ り金/クロム薄膜を 200nm 堆積させた。次に、スプレーコーティングにより基材の両面に レジストを塗布した。その後、まず基材表面を露光・現像することでライン/スペースが 20µm/40µm のコイル状電極パターンをレジストで形成し、エッチングを行うことで金/ク ロム薄膜をパターニングした。同様に、基材裏面もパターニングし、残ったレジストを除 去して、基材を旋回するようなコイル状電極を完成させた。実際にポリイミド基材上に作 製したコイル電極の顕微鏡像を図②-(3)-2-1.4 に示す。適切な条件で露光・現像、エッチン グを行うことで、電極パターンを断線なしで形成することができた。60µm ピッチで微細 ラインを形成できたことで、50mmのセンサ基材長さのうち、仮に両端5mmずつがセンサ クランプ時の重ね合わせ部分となり、コイル状電極のパターニングを行える部分が40mm であった場合でも、600巻き以上のコイルを形成できることを確認した。

図②-(3)-2-1.1 マイクロ穴あけ加工による絶縁層フィルムへのアレイ状貫通孔形成、(a)レ ーザ技術による、厚み 125µm のポリイミドフィルムへの径 20µm の貫通孔加工、(b)パンチ ング技術による、厚み 60µm のポリイミドフィルムへの径 60µm の貫通孔加工

図②-(3)-2-1.2 めっきとフォトリソグラフィによるコイル状電極形成プロセス

図2-(3)-2-1.3 銅めっき後の基材 (a)研磨前の基材表面、(b)断面像、(c)研磨後の基材表面

図②-(3)-2-1.4 コイル状電極パターニング後の基材表面

②-(3)-2-2 印刷技術を用いたフィルム型クランプセンサの設計・試作

前節までに述べてきた、銅めっきと金薄膜のフォトリソグラフィによるフレキシブルセンサ製造プロセスの開発では、径 20µm、深さ 125µm の貫通孔の導電性材料による充填や、コイル構造の形成においては線幅 20µm のファインパターンを高精度に作製できたが、露光・現像、エッチングを繰り返し行わなければならない煩雑なプロセスが必須であり、また、貫通配線を形成するためのめっきプロセスでは、貫通孔の充填に数時間かかるなど、今後センサの製品化を考える上で量産化が難しい製造プロセスであった。

そこで、2 つ目のフレキシブルセンサ製造プロセスの開発として、高スループットな製造方法であるスクリーン印刷を用いた作製手法を考案した ⁵⁾⁻⁹⁾。図②-(3)-2-2.1 にセンサの作製プロセスを模式的に示す。

まず、実際のセンサを試作するにあたり、前述した研究開発内容(2)フレキシブルな薄膜 磁気コアの一体成形プロセスの開発を行う必要がある。そこで、高透磁率材料であるパー マロイをフィルム状に加工し、熱硬化型接着剤を塗布した絶縁性フィルムを両面から挟み 込むように熱圧着で貼り合わせ、フレキシブルな磁気コア基材を作製した。高いフレキシ ブル性を備えたセンサを作製することが本研究開発の最も大きな目標であったため、厚み 20µmのパーマロイフィルムを長さ 50mm、幅 15mm にカットして使用した。パーマロイと しては、最も大きな飽和磁束密度が得られ、センサや変流器、継電器を構成する材料とし て適している、ニッケル含有率が 40%の PB パーマロイを使用した。また、絶縁性フィル ムには、前述のめっきとリソグラフィでセンサを作製した際にも使用した、安価で熱にも 強く高絶縁性な、厚み 25µm のポリイミドフィルムを、長さ 50mm、幅 20mm にカットし て使用した。接着剤もポリイミドと同様の成分のものを用いて、ポリイミドフィルム上に 10µm の厚みで塗布した。熱圧着の条件は、数十 MPa の加圧、350°C の加熱とした。この 条件下では、ポリイミドフィルム同士が精度よく密着し、気泡の発生などはなかった。以 上の工程により、パーマロイフィルムが中に挟み込まれた、長さ 50mm、幅 20mm、全体 の厚みが約 60µm の電流センサ用フレキシブル磁気コア基材を作製した。

次に、パーマロイフィルムから 500µm ほど離れた箇所のポリイミドフィルムに貫通電極 用貫通孔を形成する。この工程は、前述したレーザ、あるいはパンチングによる穴あけ加 工により行った。なお、この後形成するコイル状電極パターンはライン/スペースを 50µm/50µm(100µm ピッチ)とし、ライン数を 400 本(センサの目標サイズが長さ 50mm であ るため、センサをクランプした際の両端の重なり合う部分を 5mm ずつとすると、ピッチ 100µm の場合ライン数は 400 本が最大となる)と設計したため、貫通孔も 100µm ピッチと し、ポリイミドフィルムの左右部分にそれぞれ 400 点ずつアレイ状に加工した。貫通孔の 径は、この後の導電性ペースト充填加工において、ペーストが貫通孔の終端まで容易に流 れ込むことのできる基材の厚みと貫通孔の径の限界比率は約 1:1 であり、この比率よりも 貫通孔の径が小さくなると基材の裏面までペーストが到達しなくなる恐れがあることが実 験的にわかったため、今回の基材の厚み 60µm に対して、貫通孔の径も 60µm とした。な お、径 60µm の貫通孔は 100µm ピッチだと一列に並べて形成することは不可能なため、千 鳥格子状に配置した。実際にセンサ基材のポリイミドフィルム部分に加工した貫通孔の顕 微鏡写真を図②-(3)-2-2.2 に示す。

次に、スクリーン印刷により貫通孔に導電性ペーストを充填させる。この工程では、貫 通孔充填のため多量のペーストを吐出する必要があるため、ペーストの吐出を抑制するス クリーンメッシュで構成された版ではなく、メタルマスクによる版を使用した。ペースト としては、貫通孔に流れ込みやすくするために、この後のコイル状電極パターンを印刷す る際に使用する高粘弾性の銀ペースト(E型回転粘度計による回転数 5rpm での粘度測定値 が約 270Pa·s)に希釈溶剤を混ぜ、粘度を 100Pa·s 程度に調整したものを使用した。導電性ペ ースト充填工程後の基材上面からの顕微鏡写真を図②-(3)-2-2.3(a)に示すが、一度のスクリ ーン印刷工程で800点の貫通孔すべてに導電性ペーストを充填させることができた。また、 貫通孔の断面 SEM 像を図②-(3)-2-2.3(b)に示すが、基材の裏面までペーストが到達してい ることが確認できる。以上から、スクリーン印刷による貫通電極の形成が達成できた。ス クリーン印刷法は1回の印刷プロセスが約10秒程度で完了する手法であり、ペーストを硬 化させる加熱乾燥工程も180°C で15分程度であるため、前述しためっきによる貫通孔充 填加工と比較して、大幅な加工時間の短縮が可能となった。

次に、同様にスクリーン印刷でセンサ表面と裏面のコイル状電極パターンを形成する。 本工程では、前述のようにコイル状電極パターンのライン/スペースを 50µm/50µm(ピッチ 100µm)とした。この理由としては、現状のスクリーン印刷では精度良く印刷できる最小ラ イン幅は 30µm 程度であること、また、今回の印刷ではライン長さは 15mm 程度となるた め、ライン幅に対して非常に高アスペクト比(ライン幅を 50μm とすると、ライン幅とライ ン長さの比は 1:300)なラインとなることから、より印刷時のにじみやかすれが発生しやす いこと、などを考慮して、ライン幅を現状のスクリーン印刷による高精度な印刷可能最小 幅より少し大きい 50µm と設定した。なお、本工程では、液ダレによる隣り合うライン同 士の接触を防ぐため、前述した高粘弾性の銀ペーストを使用した。ここで、このような高 粘弾性のペーストは一般的なスクリーン印刷で使用するスクリーンメッシュではその網目 を通過させて吐出することができない。そこで、本工程では高粘弾性ペーストでも吐出可 能な、強高度のステンレスメッシュを用いてスクリーン印刷を行った。まず基材の表面は、 パーマロイフィルムを挟んである箇所をまたぐように、隣り合う貫通電極同士を結ぶライ ンを印刷する。180°C で15 分の加熱乾燥後に、裏面はパーマロイフィルムを挟んである箇 所をまたぐように、隣り合う貫通電極の1つ隣りの貫通電極とを結ぶラインを印刷する。 このような印刷を行うことで、すべてのラインがつながり、1 本のラインから構成される コイル構造となる。電極パターン印刷後のセンサ基材の顕微鏡写真を図②-(3)-2-2.4 に示す が、本工程に適したペーストやスクリーン版を選択したことで、かすれによる断線やにじ みによる隣り合うライン同士の接触を防ぎ、高精度な印刷を行うことができた(図② -(3)-2-2.4(b))。また、スクリーン印刷機に取り付けた CCD カメラでアライメントすること で、容易にラインと貫通電極との位置合わせを行うことができた(図②-(3)-2-2.4(c))。図② -(3)-2-2.5 に印刷したラインの段差計による測定像を示すが、一度の印刷で約 10μm の厚み となった。スクリーン印刷はアライメントを精度良く行うことで同じパターンを複数回重 ねて印刷することも可能であるため、仮にコイル抵抗が高くセンサとしての性能に影響が 生じる場合は、複数回の印刷によりライン厚さを増加させることで、コイル抵抗を減少さ せることもできる。

次に、再度スクリーン印刷により、コイル状電極を保護するための絶縁層を形成する。

199

本工程では、耐水性、対薬品性に優れ、電気絶縁性も高いエポキシを絶縁性層材料として 選択した。センサ基材表面、裏面ともにエポキシを約 10µm 成膜し、コイル状電極両端の 取り出し電極のみ露出した構造とした。

最後に、センサ基材の両端 5mm ずつ、レーザ加工装置によりポリイミドフィルム部分 のみを除去し、挟み込んであるパーマロイフィルムを露出させた。これは、センサをクラ ンプした際にセンサ基材両端のパーマロイ同士を直接密着させることで、磁力線の漏れの 少ない閉磁路を形成させるための加工である。図②-(3)-2-2.6 に完成したフィルム型フレキ シブルクランプ式電流センサの写真を示す。最終的なセンサの厚みは 100µm 程度で、非常 に高いフレキシブル性を有している。また、重量は 0.28g であったことから、開発目標値 (1)大きさ 20mm×50mm×1mm 以下、および、(2)重量 2g 以下を達成した。

なお、今回使用した市販の標準的なスクリーン印刷機においては、スキージの幅が最大 で150mm 程度であるため、版のワークサイズも150mm×150mm 程度となる。この版のワ ークサイズをフルに活用すれば、20mm×50mmのセンサは1度の印刷プロセスで20点以 上パターニングできる。実際に、今回の試作においても図②-(3)-2-2.7に示すように簡単に センサの量産が可能であった。このことからも、スクリーン印刷はセンサネットワークな どの小型デバイスを量産しなければいけない分野において適した製造プロセスであると言 える。

図②-(3)-2-2.1 スクリーン印刷によるコイル状電極形成プロセス

図②-(3)-2-2.2 千鳥格子状に形成した貫通孔

図②-(3)-2-2.3 スクリーン印刷による導電性ペースト充填プロセス

図②-(3)-2-2.4 スクリーン印刷によるコイル状電極パターン形成

図②-(3)-2-2.5 印刷したコイル状電極パターンの厚み測定結果

図②-(3)-2-2.6 作製したフィルム型フレキシブルクランプ式電流センサ

図②-(3)-2-2.7 本製造プロセスでのセンサ量産の様子

②-(3)-2-3 印刷およびリソグラフィ技術を用いたフィルム型クランプセンサの設計・試作

スクリーン印刷技術を用いることで、フィルム型フレキシブルクランプ式電流センサの 高スループット製造プロセスを確立したが、スクリーン印刷は塵埃に弱く、本研究開発の ようにライン幅が数十µm の場合は、スクリーン印刷時に版に塵埃が付着するとただちに 印刷不良による断線につながる。特にコイル構造の場合はすべてのラインが1本に結ばれ ているため、1 箇所でも断線が発生するとコイル全体の不良となる。そのため、実験室レ ベルでの作製の場合は塵埃が吸着することが多く、製造の歩留まりは高くなかった。

そこで、これまでに記述してきた、高スループット製造プロセスであるスクリーン印刷 と、高精細製造プロセスであるリソグラフィを融合させた、ハイブリッド製造プロセスを 考案した。図②-(3)-2-3.1 に本手法によるセンサの作製プロセスを模式的に示す。貫通孔を 形成するプロセスまではこれまでと同様であり、その後、基材表面に低粘度の感光性銀ペ ーストをスクリーン印刷により成膜する。この際、ペーストの粘度が低いため、貫通孔に も容易に流れ込み、貫通電極の形成が完了する。次に、フォトリソグラフィ技術で感光性 銀ペーストの露光・現像を行うことで、コイル状電極パターンを形成する。基材裏面も同 様にパターニングすることで、コイル状電極を完成させる。このように、2 度の露光・現 像プロセスは必要となるが、1 回のプロセスが 10 秒程度のスクリーン印刷で銀ペースト薄 膜の成膜が可能であり、また、その際にこれまでの製造手法では独立したプロセスとして 必須だった貫通孔の充填が同時に完了する。さらに、ラインパターンはリソグラフィによ る形成のため、前述した金/クロム薄膜でのラインパターン作製の際と同様に、コイル巻数 を増加させることのできる、ライン/スペースが 20μm/40μm 程度のファインパターンも作 製可能と考えられる。本手法で試作した電流センサの顕微鏡像を図②-(3)-2-3.2 に示すが、 貫通孔の充填は非常に良好であり、断線箇所も基材全体で見当たらなかった。その後、本 手法でセンサの作製を続けたところ、製造の歩留まりは9割以上の結果となった。

以上、ここまでに3通りの製造手法を考案したフィルム型フレキシブル電流センサの設計・試作結果を表②-(3)-2-3.1 にまとめる。それぞれ一長一短のある製造手法であるため、目的や製造設備等に合わせて使い分ける必要はあるが、製品化を考える場合は製造のスピードと正確性が同時に求められるため、最後に記述したスクリーン印刷とフォトリソグラフィを融合させたハイブリッド製造プロセスが適していると考えられる。

図②-(3)-2-3.1 感光性銀ペーストによるフレキシブル電流センサの作製プロセス

図②-(3)-2-3.2 感光性銀ペーストを用いて作製したフレキシブル電流センサ

	めっき+リソ	スクリーン印刷	スクリーン印刷+リソ
貫通孔充填速度	×	Ø	Ø
貫通孔充填精度	O	\bigtriangleup	0
パターン形成速度	0	O	0
パターン形成精度	O	\bigtriangleup	Ø
コスト	\bigtriangleup	O	0

表②-(3)-2-3.1 考案した3つのフレキシブル電流センサ製造プロセスの比較

②-(3)-3 ワンタッチクランプ構造の設計・試作

全体の膜厚が 100µm 程度のフィルム型フレキシブルセンサの高スループット製造プロ セスを開発し、実際に試作も行ったため、次に研究開発内容(3)ワンタッチクランプ構造設 計を行い、クランプ留具を試作した。クランプ留具として求められる機能は、

(1) ワンタッチでクランプでき、センサ取り付けの作業性を悪化させない形状

- (2) 小型·軽量
- (3) 安価で高スループット製造が可能な構造
- (4) 閉磁路構造に影響を与えない、絶縁性材料での構成
- (5) 磁力線の漏れを防ぐため、磁気コアの終端同士を強固にクランプする構造

などが挙げられる。そこで、これら機能を同時に満たすことのできる、小型のプラスチッククランプ留具を設計した。留具の詳細を図②-(3)-3.1に示す。クランプ留具の下部側には、

センサ取り付け時の作業性を悪化させないように、センサの両端を固定できる出っ張りを 2つ設けた。パンチング加工などを用いて径 2mm の貫通孔をセンサの両端に4箇所形成し、 クランプ時にこの出っ張りに引っ掛けることでセンサの固定作業を容易とする。また、ク ランプ留具の上部側には、無線ノードなどとの接続用のフレキシブルケーブルを取り付け られるように、窪みを設けた。センサをクランプした際に、センサ両端の取り出し電極が この窪み部分にくる構造となっているため、ここに微小なばね電極を取り付けたフレキシ ブルケーブルを通すことで、センサの取り出し電極と接続でき、外部に取り回すことが可 能となる。

今回開発したクランプ留具は、一般的なプラスチック材料で作製できる構造のため、射 出成形による高スループット製造が可能である。実際に射出成形で製造したクランプ留具 の写真を図②-(3)-3.2 に示す。受配電設備内等で縦向きの電線にセンサを取り付ける際に、 センサを固定させるためのフック構造を持たせたクランプ留具も開発した。図②-(3)-3.3 に センサをクランプし、留具で固定した写真を示す。上下のクランプ留具は3箇所の引っ掛 け爪で固定する構造であるため、センサ取り付けの作業性もよく、また、容易に取り外す ことも可能である。

図②-(3)-3.1 開発したフィルム型電流センサ用クランプ留具

図②-(3)-3.2 射出成形により作製したクランプ留具

図②-(3)-3.3 開発したに留具よるセンサクランプの様子

②-(3)-4 フレキシブルクランプセンサの性能評価

作製したフィルム型フレキシブル電流センサを、マルチプロダクト校正器に接続された 電線にクランプし、電線に一次電流が流れた際にセンサのコイルに発生する二次電流や二 次電圧値を測定することでセンサとしての特性を評価した。なお、以下の実験ではすべて 50Hzの交流電流を使用した。

初めに、センサの基礎的な性能の評価を行った。実験では、3 つのフレキシブルセンサ を準備し、最初にセンサ単体で一次電流が 0 から 100A までの範囲で出力電流と電圧値を 測定し、次に 2 つのセンサを重ね合わせ、センサ両端の取り出し電極に接続したケーブル を使用してセンサ同士を直列、および並列に接続して同様の測定を行い、最後に 3 つのセ ンサを同様に直列、および並列に接続して測定を行った。今回開発した電流センサはその 高いフレキシブル性とフィルム状の構造により、このような重ね合わせての使用も可能で あることから、センサ複数個を接続することで出力を増加させ、無線ノードを自立駆動さ せるための電源としての適用性を探った。なお、3 つのセンサはすべてコイル巻数が 400 巻きであり、取り出し電極間の抵抗(コイル抵抗)はそれぞれ、4.49、4.23、4.01kΩであった ため、個々の性能の違いはそれほどないと考えられる。図②-(3)-4.1 に測定結果を示すが、 一般的な電池と同様に、直列に接続すると出力電流は変化しないが、出力電圧は比例的に 増加し、一方、並列に接続すると出力電圧は変化しないが、出力電流は比例的に増加する 結果となった。この結果から、開発品のセンサ単体では出力が小さい場合でも、複数個を 直列、あるいは並列に接続することで電流や電圧値を増加させ、無線ノードなどの電源と して使用できることを確認した。

次に、センサクランプ時の重ね合わせ状態の違いによる性能への影響を調査した。実験 ではセンサを3つ準備し、それぞれ以下の条件で一次電流が0から20Aまでの範囲で出力 電圧を測定した。

(1) センサ両端のポリイミドフィルム部分を除去せずに、クランプ時にテープなどで簡易的に固定

(2) センサ両端のポリイミドフィルム部分を除去せずに、クランプ時に留具で強固に固定

(3) センサ両端のポリイミドフィルム部分を除去し、パーマロイフィルムを露出させ、 クランプ時に留具で強固に固定

図②-(3)-4.2 に上記 3 つの条件で、コイル巻数を 100 巻に換算した出力電圧結果を示す。テ ープで簡易的に固定したセンサでは 0.4mV/A、ポリイミドフィルム部分を除去せずにクラ ンプ留具で強固に固定したセンサでは 1.0mV/A、ポリイミドフィルム部分を除去してクラ ンプ留具で強固に固定したセンサでは 1.2mV/A の出力となった。一方で、どのようなクラ ンプ形態であっても、出力電圧のリニアな応答性は同様であった。従って、本開発品を単 純なセンサとしてのみ使用する場合はクランプ形態を選ばないが、センサに高出力が求め られる使用条件下、例えばセンサの二次電流を無線ノードの駆動用電源として使用する場 合などは、レーザによる加工プロセスが必要にはなるが、センサ両端のパーマロイを露出 させて留具で強固にクランプすることが適切であることを確認した。

次に、本センサは受配電設備内等の狭所で使用されることが想定されるため、電線など から生じる熱や、センサ自身もコイル抵抗により熱を発生する可能性があり、それらが排 出されず、センサの特性に影響を与える可能性もある。そこで、センサを45×45×70mmの ケースで覆い、ケース内部の温度を計測しながら特性評価実験を行うことで、熱の影響も

209

調査した。図②-(3)-4.3 に、電線に 100A の電流を流した際のセンサコイルに発生する出力 電圧値と、センサ周辺の温度を時間の関数として示す。電線が発する熱により、約 30 分で センサ周辺の温度は 84℃ まで上昇したが、コイルからは 89mV の電圧が安定的に得られ た。なお、コイル抵抗は 4kΩ程度であるため、数μA の微弱な電流が流れることによる熱 の発生はなかった。この結果より、本研究開発で製造したセンサが、狭所などの熱がこも りやすい場所であっても敷設することに問題はないことを確認した。

図②-(3)-4.1 フィルム型フレキシブルクランプ式電流センサの基礎特性

図2-(3)-4.2 クランプ形態の違いによるセンサ特性の変化

図2-(3)-4.3 開発したセンサの温度による影響の調査

②-(3)-5 まとめ

表②-(3)-5.1 に、本研究開発で製造したフィルム型フレキシブルクランプ式電流センサと、 最小サイズの市販クランプ式電流センサのデータをまとめる。まず、市販品と比較して、 本研究開発品はサイズも重量も1/50以下であり、大幅な小型化に成功した。検出効率につ いては、本研究開発品単体では、厚さ8mmのフェライトコアにコイルを800巻きした構 造である市販品には大きく劣るが、一方で、本研究開発品は非常に高いフレキシブル性を 備えているため、複層構造としても電線へのクランプ性能は大きく低下しない。10個程度 の本研究開発品を重ね合わせて直列に接続することで、市販品の検出効率と同等の値まで 出力電圧を増加させることが可能である。適用電流については、市販品は構造上クランプ 箇所に微小な空隙が発生することで磁力線の漏れが発生し、最小サイズのセンサでは出力 電圧のリニアな応答は15A程度の一次電流までとなるが、本研究開発品は磁気コアがフィ ルム状であるという特徴から、その終端同士を強固に密着させてクランプすることで高精 度な閉磁路を形成することができ、140A程度の一次電流まで出力電圧はリニアな挙動を示 した。その他、コイル抵抗や許容脱着回数、動作温度は製造に使用した材料などから、市 販品と同等の値であると考えられる。

以上の結果から、本研究開発において、今後世界規模での省エネルギーの達成に向けた、 電力消費量の見える化・電力供給量の自動最適化を実現するために必須である、高性能か つ安価で大量生産が可能な、取り付け作業性の良い小型・軽量でフレキシブルなクランプ 式電流センサの開発、および製造プロセスの確立を達成した。

表②-(3)-5.1 最小サイズの市販クランプ式電流センサと本研究開発で製造したフィルム型 フレキシブルクランプ式電流センサのデータ比較

評価項目	市販品	開発品	
構造	フェライトコア、ナイロンケース	パーマロイ、ポリイミドフィルム	
サイズ	8 cm ³	0.1 cm ³	
重量	12 g	0.28 g	
検出効率(変換効率)	0.10 V/A	0.10 V/A(センサ15個を直列接続)	
適用電流	0.1~15 A(リニアな応答限界)	140 Aまでリニアな応答	
コイル抵抗	80 \pm 5 Ω	100 Ω(銅めっき後)	
許容脱着回数	100 回程度	100 回程度	
動作温度	−20~50 °C	常温から 80 °C までは確認	

②-(3)-6 参考文献

1) Q. S. Zhu, A. Toda, Y. Zhang, T. Itoh and R. Maeda: "High-Speed Copper Filling within High Aspect Ratio Through Holes in Polymer Substrates", Int. J. Electrochem. Sci., vol.8, pp.10568-10577 (2013 August)

2) Q. S. Zhu, A. Toda, Y. Zhang, T. Itoh and R. Maeda: "Periodic Pulse Reverse Copper Filling for Void-Free Through-Via Filling", in Proc. 2013 14t Int. Conf. Electron. Packag. Technol., pp.284-287 (2013 August)

3) Q. S. Zhu, A. Toda, Y. Zhang, T. Itoh and R. Maeda: "Micro-Fabrication of Flexible Coils with Copper Filled Through Polymer Via Structures", J. Phys.: Conf. Ser., vol.467, pp.012032 (2013 December)

4) Q. S. Zhu, A. Toda, Y. Zhang, T. Itoh and R. Maeda: "Void-Free Copper Filling of Through Silicon Via by Periodic Pulse Reverse Electrodeposition", J. Electrochem. Soc., vol.161,

pp.D263-D268 (2014 March)

5) 山下崇博,張毅,伊藤寿浩,前田龍太郎: "スクリーン印刷によるフレキシブル電流セン サの開発",2014年度精密工学会春季大会学術講演会講演論文集,pp.349-350(平 26-03)

6) T. Yamashita, Y. Zhang, T. Itoh and R. Maeda: "Flexible Current Clamp Sensor Using Screen-Printed Coil", in Proc. Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP) 2014 (2014 April)

7) 山下崇博,張毅,岡田浩尚,伊藤寿浩,前田龍太郎: "フィルム型電流センサによるセン サネットワークの構築",第 31 回「センサ・マイクロマシンと応用システム」シンポジウ ム論文集 (平 26-10)

8) T. Yamashita, Y. Zhang, Hironao Okada, T. Itoh and R. Maeda: "Thin Film Based Flexible Current Sensor for Green Wireless Sensor Networks", in Proc. IEEE Sensors 2014, pp.742-745 (2014 November)

9) T. Yamashita, Y. Zhang, T. Itoh and R. Maeda: "Development of a Flexible Current Clamp Sensor Using Screen-Printed Coil", Microsyst. Technol. (in press)

②-(4) グリーンセンサ端末・システム超低消費電力化技術の開発【(株)日立製作所】 ②-(4)-1 研究開発の背景と目標

<研究開発の背景>

自立電源として、太陽光を用いて無線センシングを行う例は多数報告されており、実用 化されている。しかしながら、自立電源として、屋内照明、熱、振動などの環境エネルギ ーによる発電を用いた無線センサネットワークは、長年、期待されている状況であるが、 現時点では実用性が低く、実用化に至っていないのが現状である。これは、環境エネルギ ーは、太陽光などと比較して一般に100分の1以下と極めて微小であり、かつ、供給が不 安定であることが大きな課題となるためである。

環境エネルギーにより発電し、バッテリー交換などのメンテナンスを不要とした、グリ ーンセンサ端末の実現には、自立電源の発電量向上と併せて、自立電源から供給される電 力の効率的な活用が重要である。本開発では、端末内における自立電源の微小エネルギー の分配を制御し、高効率な利用を実現する端末エネルギーマネジメント回路技術、および、 グリーンセンサの信号を増幅しデジタル化する信号処理を低電力に行うセンサ信号処理回 路技術を開発した。

<研究開発の目標>

図②-(4)-1.1 に、本開発の対象とするグリーンセンサ端末の回路ブロック構成図を示す。 開発する端末エネルギーマネジメント回路は、環境エネルギーによる発電素子および蓄電 素子の制御による効率的な蓄電と、センサの電源投入・計測タイミングや、無線送信ブロ ック、グリーン MEMS センサおよびセンサ信号処理回路の電源投入タイミングの制御を行 い、端末全体のエネルギーを効率的に活用するための回路である。また、開発するセンサ 信号処理回路は、グリーン MEMS センサの計測データを増幅し、デジタルデータに変換す る回路であり、グリーンセンサ端末における間欠的なセンサ測定を低電力化に実現するた めの回路である。

214

図②-(4)-1.1 本開発が対象とする端末システムの回路ブロック

実用的なグリーンセンサ端末システムの動作を実現するために、研究開発項目①および ③におけるセンサ仕様、システム仕様を踏まえ、以下の目標を設定した。

(i) 環境発電デバイスからの平均入力 150 µ W を用いた際の起動時間を、従来技術(大容 量蓄電デバイス単体)比で 1/100 以下に低減する端末エネルギーマネジメント回路

(ii) センサからのアナログ信号をデジタル信号に 10 bit 以上の精度で変換し、かつ、センサ起動から変換完了までを 0.5 msec 以下の時間で実現するセンサ信号処理回路

上記の目標値(i)は、同一エネルギーが入力された場合の従来回路と比較して、起動時間 を 1/100 以下とすることを目標とした。これは、太陽光などを用いた従来のセンサ端末と 比較して、1/100 以下の微小エネルギーをマネジメントする必要があることから設定した。

また、目標値(ii)は、10 bit 以上の精度を、従来よりも短時間で実現することで、低電力 化することを目標とした。これは、温度・湿度などに用途が限定されていた従来のセンサ 端末と比較して、グリーンセンサでは、多様な用途に対応するために高精度な測定を、少 ないエネルギーで実現することが必要となることから設定した。センサの種類・方式にも 依存するが、例えば電流磁界センサにおいて、測定に必要な消費電力を 50%以上削減でき る値である。

さらに、これらの開発回路と併せて、研究開発項目①のグリーンセンサおよびインター フェース回路等の必要な周辺回路をインテグレーションした端末システムを試作評価する ことでグリーンセンサ端末システムの低電力化効果を検証した。

②-(4)-2 端末エネルギーマネジメント回路の設計・試作

本項では、端末エネルギーマネジメント回路の設計と試作について述べる。

②-(4)-2-1 環境発電エネルギーマネジメントの課題

自立電源として、屋外において太陽電池を使って無線センシングを行う例は多数存在している。しかしながら、屋内照明、熱、振動などによる環境発電を用いた無線センサネットワークは実用化されていない。これは、環境発電により供給されるエネルギーは、微小かつ不安定であることが、実用的な無線センサ端末を実現するための、大きな課題となっているためである。

例えば、屋外における太陽光と比較して、屋内における LED や蛍光灯による照明光のエ ネルギー(照度)は、概ね 100 分の 1 から 1000 分の 1 程度と微小である(図②-(4)-2-1.1)。 太陽電池による発電量は、照度にほぼ比例することから、屋内照明光で得られる発電量は、 屋外の太陽光と比較して 1/100 以下となる。そのため、同一容量のコンデンサへの蓄電に 必要な時間は、照度に反比例して長くなる。例えば、屋外では 800 秒程度で蓄電可能なセ ンサ端末だった場合、屋内では 80000 秒の蓄電時間が必要となる。

また、太陽光と比較して、屋内照明光による発電は不安定であることも考慮する必要が ある。太陽光は、天候による変動は有るが、毎日、一定時間は明るくなることが見込める。 一方、屋内照明光は、設置環境により、点灯時間や頻度は大きく異なる。さらに、例えば、 長期休暇や設備点検などにより長期間の消灯が行われた場合、その間は、まったく発電で きない。このように、長期間、発電できなかった場合、その期間に使用したエネルギーや 自己放電分を蓄電し、センシング動作を再開するまでに、前述の 80000 秒の蓄電時間が必 要、といった事態が起こり得る。さらに、80000 秒の間、安定して蓄電できるとは限らず、 実際の蓄電に必要な時間は、より長くなる。このような端末システムは、長期間、安定的 に使用することは難しく、実用的とは言い難い。

以上より、微小な環境エネルギーを用いるグリーンセンサ端末においては、発電効率の 向上と蓄電のみでは、実用的な端末の実現には不十分である。本開発では、従来比 1/100 以下の微小エネルギーに対応したグリーンセンサ端末の実現のため、発電開始から端末起 動までの蓄電に必要な時間を、従来回路比で 1/100 に短縮する端末エネルギーマネジメン ト回路技術の開発を行った。

※1Fのコンデンサを0Vから4Vまで、1cm²の太陽電池で充電した場合

図②-(4)-2-1.1 屋外の太陽電池とグリーンセンサで利用する自立電源の比較

端末エネルギーマネジメントの技術課題について述べる。図②-(4)-2-1.2 は、屋外におけ る太陽光などによる発電・蓄電をマネジメントする市販 LSI を用いて、室内照明で 100 mF のコンデンサを充電した際のコンデンサの電圧を測定した例である。500 lux 程度では一定 量以上の蓄電は進まなかった。これは、屋内照明による発電量が、LSI の自己消費電力(数 µW)を下回っためである。一方、1000 lux 以上の場合、約 180 分程度で充電が完了した。

図②-(4)-2-1.2 市販の環境発電マネジメント回路と太陽電池で容量(100 mF)を充電した例

この 1000 lux での充電動作の詳細を見ると(図②-(4)-2-1.3)、約 160 分経過するまでは

平均 10µW 程度の発電量であり、160分以降は約450µW の発電量であった。これは、約160分かけて充電が進み、発電効率を向上する最大電力点制御回路(エネルギー取り出し 量が最大になるように太陽電池の出力インピーダンスを制御する回路。以下、電源制御回 路と記載)を起動できる電圧に到達し、起動することで発電量が向上したためである。

図2-(4)-2-1.3 発電制御回路の起動有無による発電効率の違い

よって、自立電源の微小エネルギーを適切に分配・制御するマネジメントを行い、発電 制御回路が起動するまでの時間を短くすることができれば、端末の起動時間を短縮でき、 かつ、環境発電の効率向上も可能である。ただし、この制御を1 µW 程度の微小電力で実 現しなければならないため、従来は実現されていなかった。

②-(4)-2-2 開発した端末エネルギーマネジメントアルゴリズム

前節で述べた課題を解決し、微小かつ不安定な環境エネルギーに対応した端末エネルギ ーマネジメントを実現するための回路アルゴリズムとして、グリーンセンサ端末内に分散 型電源を構築することを提案する。

図②-(4)-2-2.1 に、②-(4)-2-1 で述べた従来のセンサ端末における電源回路ブロック図を 示す。大容量の蓄電素子を用意した集中管理型の構成である。蓄電素子が十分に蓄電され、 一定以上の電圧となったら全体の回路を起動する。ここで、蓄電素子が大容量であるため、 蓄電の完了に、長時間を要する。さらに、全体が起動できるまで蓄電が進まなければ、発 電制御回路も起動することができないため、効率の低い状態で発電する時間が長い。

図②-(4)-2-2.1 従来の集中管理型の蓄電・給電システム

提案する端末エネルギーマネジメントアルゴリズムを図②-(4)-2-2.2 に示す。端末内の回 路ブロック毎に蓄電素子を配置し、分散型電源を構成する。そして、優先順位を付けて、 順番に一つずつ蓄電する(図②-(4)-2-2.2 では、蓄電素子 1~3 の順で優先順位が高い)。 ここで、各蓄電素子は、回路ブロックに最低限必要なエネルギー量を踏まえて大きさを決 定しておくこととする。また、優先順位が最大となる蓄電素子 1 が最小の容量を持ち、優 先順位が低い蓄電素子 3 が最大の容量を持つように決定する。

以下、本提案の電源動作を順に説明する。最初に、最小の容量を持つ蓄電素子1を充電 する(図②-(4)-2-2.2(a))。蓄電素子1は比較的小さな容量であるため、短時間で充電が完 了し、発電制御回路を起動することができる。蓄電素子1が充電完了した後、蓄電素子2 を充電する。この際は、発電制御回路が起動しているため、高効率に発電することが可能 である。蓄電素子2が充電完了した後、最後に、蓄電素子3を充電する。蓄電素子3は比 較的大容量であるため、充電には時間がかかるが、この間も発電制御回路、および、セン サの動作を維持することが可能となる。

(b) 発電制御回路を起動した状態で蓄電素子2を充電

⁽c) 最大の容量を持つ蓄電素子3を最後に充電

図2-(4)-2-2.2 開発した蓄電・給電システムの制御アルゴリズム

②-(4)-2-3 端末エネルギーマネジメント LSI の試作結果

前節で提案した、分散型電源を構成する端末エネルギーマネジメントアルゴリズムを用 いれば、微小なエネルギーに対応し、短時間で端末を起動することが可能になる。ただし、 追加する回路の消費エネルギーが大きければ無意味である。そこで、この提案アルゴリズ ムをµWオーダーの低電力で実現するために、アナログ回路を用い、ハードウェアレベル でのアルゴリズムを実装した端末用 LSI を開発した。

図②-(4)-2-3.1 に開発した端末エネルギーマネジメント LSI の外観を、表②-(4)-2-3.1 に LSI の開発仕様を示す。0.13 µm の CMOS 回路で設計し、最大 5 個の蓄電素子を監視・制 御することが可能である一方、1 µW 程度という低電力でのエネルギーマネジメントを実現 した。チップサイズは 1.2 × 3.0 mm であり、小型のグリーンセンサ端末で、十分に適用可 能なサイズである。

(自己消費電力 ~1μ₩)

図②-(4)-2-3.1 試作した端末エネルギーマネジメント LSI

表②-(4)-2-3.1 端末エネルギーマネジメント LSI の仕様

項目	仕様
電源電圧	0∼3.6 V
監視可能な蓄電素子の数	5 個
監視電圧範囲	1.8~3.6 V
消費電力	1 μW

開発した端末用 LSI を用いて、15,000 lux の室内照明下(市販の従来回路が現実的な時間で起動可能な明るさ)で評価した結果を、図②-(4)-2-3.2 に示す。470 mFのコンデンサを充電した場合、開発回路有りの場合、センサ部を約2分で起動可能であった。一方、市販の環境発電マネジメント LSI のみを使った場合、約300分の充電が必要であった。また、 蓄電量で比較した場合、発電効率が数倍異なるため、約80分後には、数100倍多い蓄電量を得られている、という結果となった。

以上より、開発した端末エネルギーマネジメント LSI を適用することで、充電時間を 1/100 にすることができ、グリーンセンサ端末において、微小かつ不安定な環境エネルギ ーを使った場合でも、実用的な自立電源を実現する見通しを得た。

図②-(4)-2-3.2 端末エネルギーマネジメント LSI 用いて 照明光(15000 lux)において、470 mFのコンデンサを充電した例

②-(4)-3 低電力センサ信号処理回路の設計・試作

本項では、低電力センサ信号処理回路の設計と試作について述べる。

(2-(4)-3-1 センサ信号処理回路の課題

微小な自立電源のエネルギーを用いてグリーンセンサ端末を動作させるためには、セン サ、無線、その他回路の全てが低電力に動作することが必要である。そのため、無線セン サ端末用途として、様々な低電力化の手法が提案されている。しかしながら、センサ信号 処理に用いられるアナログ回路部は、一般的に、消費電力と速度・精度がトレードオフの 関係にある。そのため、低精度・低速な測定で十分な用途、例えば温度・湿度センサなど に限定することで、低電力化することなどが行われている(図②-(4)-3-1.1)。しかしなが ら、センサネットワークを実現・普及させるためには、グリーンセンサ各種のような、多様なセンサを自立電源で動作させる必要がある。そのためには、より広範な用途に適用可 能な、高速・高精度で、かつ、低電力なセンサ信号処理回路が必要となる。

図2-(4)-3-1.1 従来のセンサ信号処理回路

②-(4)-3-2 開発した低電力センサ信号処理回路

前節で述べた課題を解決するため、グリーンセンサ端末の間欠的なセンサ測定動作に最 適化したセンサ信号処理回路システムの構築を検討した。前述の通り、一般に、センサ信 号処理回路の、精度や測定速度といった性能は、消費電力とトレードオフの関係にあるた め、通常の回路低電力化の手法のみでは、目標達成は難しい。目標達成のためには、グリ ーンセンサ端末の発電量、蓄電時間や無線送信頻度等を踏まえた回路システムを構築し、 グリーンセンサ端末の平均消費電力を低減することが有効である。具体的には、センサ測 定の短時間化、および、アナログ-デジタル変換結果へのデジタル補正技術、の2つを適用 した低電力アナログフロントエンド回路を開発した。以下、この2つの検討内容について 述べる。

a. センサ信号処理回路の短時間動作化

無線センサノードの動作に最適化した回路システムを構築するため、センサ測定の短時 間化を検討した。図②-(4)-3-2.1 は、一般的な無線センサノードで1回のセンサ測定を行う 際の、消費電力の時間変化の模式図である。横軸が時間、縦軸が消費電力であり、センサ 測定に係る総消費電力は面積に比例する。大部分の時間は、スリープ状態になり、消費電 力を節約する。測定を開始すると、センサおよび増幅回路等の各回路は大きなエネルギー を消費し始める。そして、センサや増幅回路が安定してから、アナログ-デジタル変換を行 い、変換完了後、再び、スリープ状態に移行し消費電力を節約する。

このセンサ測定に係る一連の動作を踏まえると、アナログフロントエンド回路の動作時間を短縮することは、その消費電力を削減するのと併せて、同時に動作するセンサの消費 電力も削減できることになり、無線センサノード全体の低電力化に大きく貢献できる。(図 ②-(4)-3-2.1(b))。

図②-(4)-3-2.1 センサ測定に係る消費電力の模式図

このコンセプトの下、アナログ-デジタル変換回路(ADC)の変換時間の目標を1µsecとし、 動作安定時間を含む、アナログフロントエンド回路の起動から終了までを 500µsec 以下で 完了できるよう目標を設定し、詳細な回路設計を行った。

b. デジタル回路活用によるアナログ回路の低電力化

次に、ADC へのデジタル補正技術の適用による、低電力化について述べる。前項までに 述べた目標仕様を達成するためには、10 bit 以上の精度を有し、1 µsec の変換速度を有した ADC が必要である。しかしながら、ADC の変換精度および変換速度と消費電力は、比例 関係にある。よって、上記性能を満たす ADC は一般に、数 10 mW 程度の大きな消費電力 である。

我々は、ADCの消費電力を削減するために、デジタル補正技術を用いることを検討した。 近年、デジタル補正技術は、ADCの高分解能化、高速化や、微細 CMOS 回路の適用等を 目的として、様々な方式が提唱されている技術である。我々は、その中でも比較的簡素な 回路で、ADCの変換誤差を補正する方式¹⁾を適用し、低電力 ADCの実現を検討した。

図②-(4)-3-2.2 に、デジタル補正技術による低電力化手法の概略を示す。この回路システムは、低電力・低精度な ADC と、その変換誤差を測定するための試験信号生成回路、そ

して、変換誤差を補正するデジタル演算回路から成る。この ADC は、低電力化のため、 比較的大きな変換誤差を有したままにしてある。この ADC の変換誤差を、集積した試験 信号生成回路を使って事前に測定し、補正値を計算し記憶しておく。センサからの信号を 測定する際は、この記憶しておいた補正値を用いて、アナログ-デジタル変換結果を補正す ることで、必要な精度の変換結果を得ることができる。

図②-(4)-3-2.2 低電力センサ信号処理回路の概念図

開発した回路では、デジタル補正する前の段階で、変換精度は 10 bit 程度となるように 設計している。即ち、この ADC は 10 bit 程度の変換精度を有する ADC と同等の消費電力 を有することになる。また、デジタル補正計算は、単純な線形計算で実行でき、消費電力 としては、ほとんど無視できる演算量であるが、変換精度を 2~3 bit 向上させることが可 能である。よって、この方式を用いることで、変換精度 13 bit 程度のアナログ-デジタル変 換を、10 bit 相当の消費電力で実現できることになる。

図②-(4)-3-2.3 に、試作したデジタル補正機能付きの ADC を評価した結果として、ADC に、8 kHz、2.2 Vpp(差動入力、フルスケールの約 90%)のサイン波を入力した際のアナ ログ-デジタル変換結果のパワースペクトル密度を示す。図②-(4)-3-2.3 (a)は、デジタル補 正前のパワースペクトル密度であり、デジタル補正前の有効ビット数は約 10 bit と見積も られた。次に、図②-(4)-3-2.3 (b)は、図②-(4)-3-2.3(a)と同一の信号に対し、デジタル補正 演算を行った後のパワースペクトル密度である。デジタル補正後の有効ビット数は約 13 bit まで向上しており、期待通り、デジタル補正により高精度化できていることを確認でき た。また、その消費電力は、連続動作時で約 2.5 mW であり、低電力化の効果も確認でき た。

図②-(4)-3-2.3 デジタル補正演算の有無による測定精度の違い

(2-(4)-3-3 低電力センサ信号処理 LSI の試作結果

低電力センサ信号処理 LSI の試作結果について述べる。試作したアナログフロントエンド LSI の写真およびブロック図を図②-(4)-3-3.1 に示す。0.13 µm の CMOS プロセスで作製し、チップサイズは 2.5 × 3.0 mm である。

図②-(4)-3-3.1 開発したグリーンセンサ端末用低電力センサ信号処理 LSI

表②-(4)-3-3.1 に、開発した低電力センサ信号処理LSIの目標仕様および評価結果を示す。 コア電圧を1.2 Vとし、動作時の消費電力を低減した。また、インターフェース電圧は1.8 ~ 3.6 Vとし、一般的なインターフェース電圧とすることで、プラットフォームとしての 利用し易い仕様とした。アナログ-デジタル変換の分解能は14 bit、測定精度(実効分解能) は約13 bit であり、変換速度は1 µsec となっており、様々なセンサに適用し得る性能を有 している。このように、必要十分な高性能を有する一方、消費電力は、連続動作時で2.5 mW 程度と、同等性能のセンサ信号処理回路と比較して1/10程度に低消費電力となっている。 センサ端末の間欠動作時における、センサ信号処理回路全体の動作時間(増幅回路等を含 む)は、0.08 msecと短時間で動作することが可能であり、試作したアナログフロントエン ド回路を用い、毎秒1回のセンサ測定動作時の平均消費電力を測定したところ、0.5 µW 程 度であった(図②-(4)-3-3.2)。これは、環境発電を適用した無線センサ端末で用いるのに、 十分な低電力性能だと考える。

項目	目標仕様	評価結果
コア電圧	1.2 V	1.2 V
インターフェース電圧	1.8 ~ 3.6 V	1.8 ~ 3.6 V
アナログ-デジタル変換分解能	14 bits	14 bits
測定精度(実効分解能)	10 bits 以上	約 13 bits
変換速度	1 μ sec	1 <i>μ</i> sec
連続動作時の消費電力	10 mW	約 2.5 mW
測定所要時間	0.5 msec	0.08 msec
間欠動作(1回/sec)時の消費電力	5 μW	約 0.5 μW

表②-(4)-3-3.1 開発したグリーンセンサ端末用低電力センサ信号処理 LSI

図②-(4)-3-3.2 低電力センサ信号処理 LSI の消費電力測定例

(2-(4)-4 開発した端末用 LSI の端末システム評価

開発した端末エネルギーマネジメント LSI、低電力センサ信号処理 LSI のシステム低電 カ化効果を検証するため、グリーンセンサ(電流・磁界センサ)と開発 LSI 2 種を搭載し たグリーンセンサ端末を試作した(図②-(4)-4.1)。

(a) 試作したグリーンセンサ端末 (b) 電流計測対象のケーブル上に実装

図②-(4)-4.1 開発 LSI 2 種を搭載したグリーンセンサ端末の試作品

試作したグリーンセンサ端末のセンサ測定の評価結果を図②-(4)-4.2 に示す。本端末では、 20 秒に1回毎に、電流磁界センサを起動し低電力センサ信号処理LSI で測定し、電流測定 および無線データ送信を行った。センサ測定の平均消費電力は4 µW 程度、無線データ送 信まで含めた平均消費電力は約 88 µW 程度であり、自立電源で十分に動作可能な消費電 力である(図②-(4)-4.2(a))。本端末を用いたケーブル電流の測定例を図②-(4)-4.2(b)に示す。 グリーンセンサと低電力センサ信号処理LSI のアナログデジタル変換器を用いて(本例で は増幅回路は使用していない)、50 Hz 交流電流が形成する磁界を 20 msec 間、15 点測定 している。センサ出力 6 mVpp をフィッティングするのに十分な測定精度を4 µW の低電 力で実現できている。

図②-(4)-4.2 試作したグリーンセンサ端末のセンサ測定動作に関する評価結果

次に、試作したグリーンセンサ端末の自立電源動作について評価した結果を図②-(4)-4.3 に示す。満充電状態から、50分程度消灯し、その後、500 luxの室内照明を点灯した場合 の、蓄電素子(コンデンサ)の電圧を測定し。本端末では、蓄電素子1を電源制御回路(図 示せず)、蓄電素子2を電流センサ部および無線部、そして、蓄電素子3は余剰の電力を 蓄電しておく大容量素子、としている。本端末では、点灯から約2分後には、センサ測定 と無線送信動作を再開している。一方、市販の環境発電用マネジメント回路を適用した端 末では、照度が不足しており起動できなかった。

図②-(4)-4.3 試作したグリーンセンサ端末の充電動作に関する評価結果

②-(4)-5 まとめ

環境発電のみでセンシング動作を行うグリーンセンサ端末を実現するプラットフォー ム技術として、微小な環境発電のエネルギーをマネジメントし高効率に利用する端末エネ ルギーマネジメント回路と、低電力センサ信号処理回路の開発を行った。

端末エネルギーマネジメントアルゴリズムを考案し、低照度下においても電源制御回路 を優先的に起動することで高い発電効率で発電素子を活用可能なことを示した。開発した アルゴリズムをハードウェアレベルで実装した、端末エネルギーマネジメント LSI を開発 し、グリーンセンサ端末起動に必要な時間を、市販の環境発電用 LSI を用いた場合と比較 して 1/100 以下に短縮できることを確認した。

また、低電力センサ信号処理 LSI を開発した。センサ測定動作の短時間化と、アナログ -デジタル変換回路へのデジタル補正アルゴリズムを適用し、約13 bit の精度と1 µsec の変 換時間での測定を、1 秒に1回の測定時の平均消費電力0.5 µW(連続動作時は約2.5 mW) で実現した。市販の低電力マイコン内蔵のアナログデジタル変換回路と比較して90%程度 の消費電力削減に相当する。

開発した上記2種の端末用LSIを適用したグリーンセンサ端末を試作評価し、環境エネ ルギーの利用効率を2倍以上に向上し、かつ、センサ測定に必要な端末システムの消費電 力を60%以上削減できることを確認し、自立電源での安定動作可能なグリーンセンサ端末 プラットフォームとなっていることを確認した。

②-(4)-6 参考文献

1) W. Liu, P. Huang, and Y. Chiu : "A 12-bit, 45-MS/s, 3-mW redundant successive-approximation-register analog-to-digital converter with digital calibration", IEEE Journal of Solid-State Circuits, vol. 46, pp. 2661-2672 (2011 Nov.)

②-(5) グリーンセンサ端末機能集積化技術の開発【産業技術総合研究所、(一財)マイクロマシンセンター、(株)デンソー、(株)アルバック、大日本印刷(株)】

(2-(5)-1 研究開発の背景と目標

<研究開発の背景>

センサ端末を低コストに製造するため、自立電源とグリーン MEMS センサ、その信号処 理や情報伝達用無線機能などを低コストに機能集積化する技術の開発が重要である。

様々な異種デバイス、電子回路などを複合化した集積化 MEMS デバイスを低コストで製造するためには、それぞれのデバイスを最適なウェハサイズ・プロセスで製造することが有効である。そのため、個別に製造された MEMS デバイスや電子回路その他のデバイスを 集積化するための接合技術、さらにグリーン MEMS センサの多機能集積化には、異種デバ イス同士の3次元集積化とデバイス間の配線・加工技術を開発する。さらに、センサ・LSI などの要素部品を小型サイズに集積化実装配線するための大容量・超低リークキャパシタ 形成技術を開発する。

<研究開発の目標>

各種電子電気機器、空調機器、さらに製造装置や配電盤などに特別な追加工事等を伴う ことなく設置できる以下のグリーンセンサ端末機能集積化要素技術を開発する。

・MEMS センサからの信号を収集・処理し、計測データを無線で通信する機能を備えた 3mm 角の端末本体部チップ(集積化モジュール)を開発する。

・MEMS センサ部、端末本体部チップ(集積化モジュール)、発電・蓄電一体型デバイスを 含めたグリーンセンサ端末プラットフォームを、面積 2cm×5cm 以下で開発する。

②-(5)-2 ウェハレベルフレキシブル集積化技術の開発 【産業技術総合研究所、(一財) マイクロマシンセンター】

グリーンセンサ端末機能の集積化のため、センサからの信号を収集・処理し、計測デー タを無線で通信する機能を備えたセンサ端末集積化モジュールのプロトタイプを設計・試 作し、さらに各種のグリーンセンサ端末機能を集積化するためのセンサ端末共通プラット フォームを、WG活動を通じて設計・構築した。

さらに、グリーンセンサ端末機能を低コストかつ高い性能で、ウェハレベルでフレキシ ブル集積化するためには、要素機能部品を小形化かつ低背化して、集積化基板においては、 受動部品や導電体を埋め込み一体化したインターポーザー技術を採用し、両者を低温度で 組立・実装する接合技術が必要である。産総研8インチラインにおいて、電極形成・貫通孔 形成・表面処理・接合等の要素プロセスを開発し、TEGデバイスチップおよび集積化基板 の試作を通してウェハレベルフレキシブル集積化の為の工程開発を行った。

ウェハレベルフレキシブル集積化技術の開発目標を以下のように設定した。

- ・外形寸法2×5cmのグリーンセンサ端末共通プラットフォームを構築する。
- ・3 種類のセンサあるいは IC を搭載した 3mm 角の集積化モジュールを試作開発する。
- ・集積化実装要素技術を確立し、集積化モジュールとして機能実証を行う。

3mm角のエリアに3種類のセンサあるいはICを搭載する実装モジュールを設計・開発し、 要素機能部品を集積化するための実装要素技術を確立し、開発技術の実証としてグリーン センサ端末実装モジュールの試作に適用した。

②-(5)-2-1 グリーンセンサ端末共通プラットフォームの構築

グリーンセンサ端末の共通プラットフォームを構築するため、端末共通プラットフォームWGを組織して、各グリーンセンサに対して、センサ信号処理回路、無線回路、自立電源の開発目標値との整合をとり、最大公約数としての仕様値がセンサ端末全体の開発目標値を満足するように調整した。表②-(5)-2-1.1 にその結果得られたグリーンセンサ端末システム仕様を示す。

		電流磁界 センサ	塵埃センサ	CO2センサ	VOCセンサ	赤外線センサ
AIST 適用	無線モジュール]可能性有無	0	0	0	0	×
+	動作電圧(v)	1.8	3.3(ファン用)	3.3	3.3	3.3
レン	センサ動作時電流 (μA)	3.6	20,000	10	1,000	
サ	信号処理・IF電流(μA)	100~500 (RMS-DC)	1.5 (トリガ部1.8V)	240 (温度補正) (測定時間/sec)		1,300(測定時) 2,000(計算時)
	動作電圧(V)	1.55	1.55	1.55	1.55	
AISTM	常時動作電流(μA)	1.0	1.0	1.0	1.0	ローム製品
	送信時動作電流(mA)	10.0	10.0	10.0	10.0	
	送信時間(msec)T1 54bit	3.84	3.84	3.84	3.84	
一回の	測定に要する時間(sec T2) 0.02	1.5	100	60.0	0.1(測定時) 0.3(計算時)
測定	·送信頻度(sec) Tf	10or60	1200	600	3600	1~5
भ	均消費電流(µW)	1.8	82.5	10.78	55.0	(85.8~429)

表②-(5)-2-1.1 グリーンセンサ端末システム仕様

図②-(5)-2-1.1 に共通プラットフォームの電流・磁界センサに対応する場合の回路構成を 示す。

図②-(5)-2-1.1 電流・磁界センサへの対応

図②-(5)-2-1.2に共通プラットフォームの塵埃センサに対応する場合の回路構成を示す。

図2-(5)-2-1.2 塵埃センサへの対応

図②-(5)-2-1.3に共通プラットフォームの CO2 センサに対応する場合の回路構成を示す。

図2-(5)-2-1.3 CO2 センサへの対応

図②-(5)-2-1.4に共通プラットフォームの VOC センサに対応する場合の回路構成を示す。

図2-(5)-2-1.4 VOC センサへの対応

②-(5)-2-2 グリーンセンサ端末集積化モジュールプロトタイプの開発

図②-(5)-2-2.1 にセンサ端末モジュールのプロトタイピングの開発実績の経過をまとめて示す。

プロトタイピングの第1段階として、市販の温湿度センサと信号処理 IC を PCB 上に実装する構造のセンサ端末モジュールプロトタイプを設計し、試作した(7mm×7mm サイズ)。

3 mm 角エリア配列ウェハレベル集積化に向けたチップ to ウェハ接合 TEG 試作・評価の仕様およびその中の寸法の重要なファクターである送信 LSI の仕様決定を行った。

次に、モジュール寸法の小型化を目指して、集積化手法として、B2it(部品内蔵を可能 とするプリント基板の多層積層化実装手法)技術を取り入れ、5 mm×5 mm サイズのプロ トタイプモジュールを試作した。さらに、センサ端末小型化のため、フレキシブル基板上 に無線通信用アンテナを形成する試作を実施した。

さらなる小型化を目指して、センサ端末の重要な働きを担う送信用無線 LSI の回路設計 及び試作(2.5mm × 2.5mm)を行った。また、B2it 技術を用いて、温度センサ・湿度セン サ・水晶発信器・MPU・無線 LSI の実装を実施した(3.9mm × 3.9mm × 3.5mm)。抵抗 12 個、キャパシタ 14 個を含み、8 層の積層構造からなる。この結果により、この B2it 手法で 実用化を図ることができることがわかった。

以上の検討を通じて、集積化モジュールの部品構成と実装構造を決定し、Si-インターポ ーザーを用いるモジュールの集積化試作につなげた。

図②-(5)-2-2.1 センサ端末モジュールのプロトタイピング

センサ端末集積化モジュールの小型化に対応するため、外形寸法 2.5 mm × 2.5 mm の送信 用無線 LSI の回路設計及び試作を行った。図②-(5)-2-2.2 にセンサ信号処理・無線通信 LSI のカスタマイズの結果を、図②-(5)-2-2.3 にセンサ信号処理・無線通信 LSI の動作特性の評 価結果を示す。本 LSI は、アナログ(100XAMP+8bitsADC)及びデジタル(I2C compatible)の 両インターフェースを有し、タイマー動作あるいはイベントドリブン動作が可能である。 センサ信号のアナログインターフェースにおける直線性に優れた入出力特性を有し、多分 野での応用に適している。また、接続されたセンサへの電力供給をセンサ休止状態で電力 供給を遮断する制御用アナログスイッチを有する。

図2-(5)-2-2.2 センサ信号処理・無線通信 LSI のカスタマイズ

図②-(5)-2-2.3 センサ信号処理·無線通信 LSI の動作特性

開発したカスタム LSI の性能を市販品と比較すると次のようになる。表②-(5)-2-2.1 に従 来 LSI との比較表を示す。上記の機能を付与することにより、LSI の消費電力は同様な本 体サイズの市販の LSI に対して、15-20%ときわめて低い水準に抑えることが可能になり、 実用化レベルと遜色のない性能を有していることが分かった。

	NMEMS RF-LSI	Commercial RF-LSI
電力消費	< 15-20%	100%
コスト	<100円 (Quan. >1M)	>500円
インタフェース	Analog / Digital	Digital
センサへ供電	Analog Switch (x2)	
Wake-up	コンパレータ /タイマー	タイマー

表②-(5)-2-2.1 従来LSI との比較

センサ端末集積化モジュールの開発実証として、プロトタイプモジュールのセンサ端末 機能を評価した。図②-(5)-2-2.4 にプロトタイプモジュールのセンサ端末機能評価結果を示 す。開発した送信用無線 LSI、温湿度センサ、水晶発信器等を実装したモジュールに、試 作したフレキシブル基板アンテナと自立電源である太陽電池を接続した端末でデータ通信 実験を実施し、ノイズの多い開放された展示会空間において 12m 以上の通信距離まで、ノ イズのない密閉されたオフィス空間において 30m 以上の通信距離まで、無線信号が到達す ることを確認し、実用化の見通しを得た。

図②-(5)-2-2.4 プロトタイプモジュールのセンサ端末機能評価結果

②-(5)-2-3 ウェハレベル集積化実装プロセスの開発

チップサイズで実装できるキャパシタ内蔵 Si インターポーザーによる実装について、 C2W (チップ to ウェハ) 接合試作を実施しながら、センサ端末共通プラットフォーム WG を通じて検討し、チップサイズインターポーザーによる集積化構造設計を行った。

センサの信号処理・無線通信用 LSI と集積化実装用インターポーザーを用いたセンサ端 末の集積化を想定して、LSI-TEG チップと Si-インターポーザー接合評価ウェハとのウェハ レベル(C2W)接合構造及びプロセスを開発し、集積化モジュール実証に適用した。

②-(5)-2-3-1 LSI-TEG チップの試作

3 mm 角の集積化モジュールへの実装を想定して、1~2.54 mm 角の LSI-TEG チップを製作した。表②-(5)-2-3-1.1 に 2.54 mm 角の LSI-TEG チップ製作フローを、図②-(5)-2-3-1.1 に LSI-TEG チップ試作品(分割前)を示す。さらに、ダイシングによる分割の後、電気的接続用パッドにバンプ形成(バンピング)を行った。バンピングは、開発した 2.54 mm 角のカスタム LSI チップにも実施した。本試作では、ワイヤーボンディングを利用した金のスタッドバンプを形成した。図②-(5)-2-3-1.2 に LSI-TEG チップ試作品(バンプ形成後)を示す。バンプ径は約 60 µm、バンプ高さは約 20 µm とした。電極ピッチは 170~220 µm で、一部の電極間に配線を設けいわゆるデイジーチェーンパターンを形成した。

そのほか、市販の鉛フリーはんだボール付きの標準 TEG チップを利用して、厚さ 100 μm の低背型チップに研削加工した TEG チップも後述の接合実験に使用した。

表②-(5)-2-3-1.1 LSI-TEG チップ製作フロー

1	熱酸化	
2	電極スパッタ	•Au/Cr:500/20nm
3	電極フォト	・マスク露光装置 露光強度∶60mJ
4	Au/Cr エッチ	
5	レジスト剥離	
6	ダイシング	・42mmロに分割

図②-(5)-2-3-1.1 LSI-TEG チップ試作品(分割・バンプ形成前)

図②-(5)-2-3-1.2 LSI-TEG チップ試作品(バンプ形成後)

2-(5)-2-3-2 Si-インターポーザー接合評価ウェハの試作

超小型の集積化モジュールの実現を目指して、外形寸法 1~2.54 mm 角の構成部品チッ プを実装する基板として Si-インターポーザーを採用し、その実装組立のための接合プロセ スを先行開発するため、Si-インターポーザー接合評価ウェハを試作した。

表②-(5)-2-3-2.1 に接合評価ウェハ製作フローを示す。本ウェハは、貫通電極にメッキの 埋め込みプロセスを使用しない Si 基板のバルク材をそのまま利用する方式の Si-インター ポーザーである。貫通電極とその周辺とを絶縁するために、深掘ドライエッチングと SiO2 の埋め込み CVD プロセスを用いた。図②-(5)-2-3-2.1 に接合評価ウェハの試作品の外観を 示す。

そのほか、市販の標準 TSV メッキ埋め込み方式 Si-インターポーザーウェハも後述の接 合実験に使用した。

No.	工程	断面図	工程条件
1	支持層研磨		・8 インチ SOI ・ <0.02Ωcm 活性層 ・支持層 725⇒400μmt
2	マークフォトエッチ		 マスク露光装置 露光強度:60mJ

表②-(5)-2-3-2.1 接合評価ウェハ製作フロー

3	裏面 TEOS 成膜		•
4	TSVフォト		・マスク露光装置
			露光強度:60mJ
5	TSV酸化膜エッチ		•
6	TSV シリコンエッチ		・エッチング量 400µm
7	TSV 埋め込み		•
8	エッチバック		•
0			
9	接合電極スパッタ		• Au/Cr : 500/20nm
10	接合電極フォト		 マスク露光装置
	Au/Cr エッチ		露光強度:60mJ
11	ポリイミドコート		•
12	電極開口	<u> </u>	 ・マスク露光装置
	フォトエッチ		露光強度:100mJ
13	活性層除去		•
1			

14	電極開口フォト 酸化膜エッチ	 ・マスク露光装置 露光強度:60mJ
15	電極スパッタ	• Au/Cr : 500/20nm
16	電極フォト Au/Cr エッチ	 マスク露光装置 露光強度:60mJ

図2-(5)-2-3-2.1 接合評価ウェハ試作品

②-(5)-2-3-3 チップ to ウェハ接合プロセスの開発

集積化モジュール実装組立に必要な接合プロセスの先行開発を目的として、前述の LSI-TEG チップと接合評価ウェハを用いて、ウェハレベル C2W 接合のプロセス開発を実 施した。

a. 接合方法及び条件

表②-(5)-2-3-3.1 にウェハレベル C2W 接合方法を示す。接合方式としては、接合材料に 電極接続用の鉛フリーはんだボールと金バンプを利用した熱圧着 C2W 接合法を用いた。 その場合、接合材料の表面酸化や有機物汚染を避けるために、一般的なグリセリン塗布法 とプラズマ・イオン照射法を採用した。接合装置としては、イオンミリング・フリップチッ プ接合装置と産総研8インチラインのC2Wプラズマ接合装置を用いた。

	接合方法	チップ/バンプ/ウェハ構成	プロセス条件
1	イオンミリング・ フリップチップ 接合装置	・鉛フリーはんだボール形成 Si ベアチップ(100umt) ・市販 Si-インターポーザー	イオンミリング活性化(ウェハ面) ・ガス:Ar 5sccm ・パワー:600W ・圧力:20Pa ・時間:30sec 接合(グリセリン塗布) ・温度:400℃ ・加重:5N ・時間:10sec/chip
2	C2W プラズマ 接合装置(産総 研)	・金スタッドバンプ形成 LSI-TEG チップ ・接合評価ウェハ	プラズマ活性化(チップとウェハ両方) ・ガス:Ar 20sccm ・パワー:100W ・圧力:60Pa ・時間:30sec 接合 ・温度:200℃ ・加重:190N ・時間:3min/chip

表②-(5)-2-3-3.1 ウェハレベル C2W 接合方法

b. 接合実験結果

上記の方法により接合したチップ接合ウェハの接合部を評価した。図②-(5)-2-3-3.1 に C2W プラズマ接合後の接合評価ウェハの外観を示す。TEG チップの破損などは見られず、 電極サイズ 60 µm の配線接続に十分なアライメント精度にて接合できていることが分かっ た。

本実験においては、C2W 接合時の圧着の際にチップとウェハとの間隔を調整する変位制 御方法を採用した。この理由は、チップとウェハのそれぞれを平坦な構造で設計・製作した ことによる。生産性を向上させるためには、変位制御より荷重制御の方が適しているため、 チップかウェハのいずれかに突き出し構造を設けることが望ましい。荷重制御を採用する ことにより、量産装置としてのフリップチップ接合装置によれば、接合タクトタイムが今 回の実験でのチップ当たり 10 sec から 5 sec に短縮できると推測できる。

また、接合温度を 200℃に低減することにより、PCB やポリイミドなどの樹脂基板への チップ実装にも適応でき、応用分野範囲の拡張が期待できる。

図2-(5)-2-3-3.1 C2W プラズマ接合後の接合評価ウェハ

接合した LSI-TEG チップのうちの 15 個について、チップの周端部にある端子 L 及び R の 2 ヶ所についてデージーチェーン配線の導通チェックを実施した。図②-(5)-2-3-3.2 に C2W プラズマ接合部の導通確認結果を示す。評価端子間にはバンプを介した接合構造部が 8 ヶ所含まれており、全部で 30 ヶ所評価したうちの 29 ヶ所について良好な導通特性が得 られた。

図②-(5)-2-3-3.2 C2W プラズマ接合部の導通確認結果

c. まとめ

以上の結果から、集積化モジュール実装の要素技術としてのウェハレベル C2W 接合プ ロセス開発によって、接合温度 200℃での周辺部品への熱影響の少ない LSI や受動部品の チップをウェハレベルで Si-インターポーザーウェハに接合実装できる見通しを得て、一部 のプロセスを集積化モジュール実証試作に適用した。

(2)-(5)-2-4 研究開発の結論及び成果

グリーンセンサ用共通プラットフォームを設計し、2 × 5cm 寸法への実装に反映した。 各グリーンセンサに対して、センサ信号処理回路、無線回路、自立電源の開発目標値との 整合をとり、最大公約数としての仕様値がセンサ端末全体の開発目標値を満足するように 調整した。また、センサ信号処理・無線通信用カスタム LSI を開発し、当 LSI と水晶振動子 と R/C チップの3 種類の部品を搭載した外形寸法 3 mm 角のプロトタイプモジュールを開 発した。当プロトタイプモジュールを市販の温湿度センサと組合せ、センサ端末機能を実 証評価し、通信距離 30 m 到達を確認するとともに集積化モジュールの仕様に反映した。 さらに、1~2.54 mm 角の LSI-TEG チップを Si-インターポーザーウェハに配線接続と同時 に集積化するウェハレベル C2W 接合実装プロセスを開発し、集積化モジュール試作に反 映した。プラズマ活性化方式 C2W 接合技術を用いた、低温(200°C)でフレキシブルな樹脂 基板上に集積化可能な実装プロセスを開発した。 ②-(5)-3 高アスペクト比超低リーク大容量キャパシタ向け絶縁膜・配線技術の開発
 【(株)デンソー】

②-(5)-3-1 絶縁膜・配線技術の位置付けと目標

<絶縁膜・配線技術の位置付け>

センサ端末はセンサ部、無線回路部、電源部から構成される。このうち無線回路部は RF-LSIを受動部品と共にフレキシブルアンテナ上に実装する必要がある(図②-(5)-3-1.1)。

図2-(5)-3-1.1 端末の構成と集積化概念

ここで樹脂基板上に外付け受動部品等を実装してそれらを積層する従来技術を用いる とデッドスペースが生まれ、結果として端末の小型化が不可能になる。ここでは特に集積 化の課題となり得る異なるチップ間の配線接続やキャパシタ等の受動部品を対象として従 来技術に代わる集積化技術の実証と、その要素技術開発に取り組んだ。

<絶縁膜・配線技術の目標>

具体的には

(1) 小型・集積化が可能なことを検証するためのインターポーザーとして、Si 基板上に TSV と集積可能な大容量キャパシタを形成して、その機能を検証する(図②-(5)-3-1.2)。
(2) キャパシタの更なる高容量化、低抵抗化に向けての電極形成の要素技術として超臨界 流体による Cu 埋め込み技術を確立する。の2点に対して開発を行った。

図②-(5)-3-1.2 キャパシタと TSV を集積化したインターポーザー

(2)-(5)-3-2 大容量キャパシタの形成

ここでは TSV とキャパシタを集積化することで小型化が可能となることを示すことを 目的として、大容量キャパシタの形成を検討した。大容量キャパシタを実現するには

(1)高誘電材料を用いる

(2)誘電体膜厚を低減する

(3)電極対向面積を増大させる

の方法がある。ここでは実績のある材料でキャパシタを形成することを優先して誘電体 を SiO₂ とし、主に(3)の方法を採る。平行平板(プレーナ)型のキャパシタに対して面積を 増大させるには溝(トレンチ)もしくは微小孔(ビア)が並ぶ構成とした。また、内部に 埋め込む電極材料としては従来技術でも埋め込み性に優れる CVD 法の成膜による Poly-Si を選択した。

②-(5)-3-2-1 ビア形状の設計

まずセンサ端末におけるキャパシタの必要容量から見積もった。接続する回路側からの 要求に合わせて、11個のキャパシタを集積することとした。それらの容量値の一覧を表② -(5)-3-2-1.1に示す。

	容量特性
	仕様
C1	120pF±15%
C2	10±0.25pF
C3	10±0.25pF
C4	100nF
C5	100nF
C6	100nF
C7	100nF
C8	560pF±5%
C9	56pF±5%
C10	100nF
C11	100nF

表②-(5)-3-2-1.1 必要キャパシタ容量

これらのうち、1 nF以下についてはプレーナ型で対応可能であるが、大容量が求められる6個についてはトレンチ型もしくはビア型とし、容量密度に関して3 mm角で1 µFを目標値と設定した。

まずキャパシタの形状としてトレンチ型とビア型でどちらが大容量化に有利な形状と なるか検討した。上面から見たトレンチおよびビアの開口幅を L、間隔を S とし(図② -(5)-3-2-1.1)、断面から見た深さを d とした場合(図②-(5)-3-2-1.2)、トレンチ型、ビア 型での単位面積あたりの容量密度 C_{tre}, C_{via}はそれぞれ

$$C_{tre} = \frac{\varepsilon_{0} \cdot \varepsilon_{r}}{t} \left\{ 2 \cdot F_{f} \cdot A_{R} + 1 \right\}$$
(1)
$$C_{via} = \frac{\varepsilon_{0} \cdot \varepsilon_{r}}{t} \left\{ 4 \cdot (F_{f})^{2} \cdot A_{R} + 1 \right\}$$
(2)

と表すことができる。ここで

F _f (フィルファクター)=	L/(L+S) ε ₀ :真空誘電率
A _R (アスペクト比)=d/L	ε _r :比誘電率

t:誘電体膜厚

である。

図②-(5)-3-2-1.1 トレンチ型およびビア型におけるディメンション

図②-(5)-3-2-1.2 断面方向のディメンション

トレンチ型については長手方向のディメンジョンには依存せず、どちらも形状的には F_f と A_Rに依存する。誘電体を SiO₂(膜厚=15nm)として式(1),(2)をグラフ化した結果を図② -(5)-3-2-1.3 に示す。

両者とも A_Rに依存して容量密度は増大する。F_fについては 0.5 を超えるとビア型が有利 となる。これは壁が薄くなるとビア型の方がトレンチ型よりも側壁面積の割合が増えるた めである。こうした知見から大容量が要求される 6 個のキャパシタについてはビア型とし、 その他の 5 個をプレーナ型としてキャパシタチップの全体レイアウトを設計した。

図2-(5)-3-2-1.3 トレンチ型、ビア型における容量密度の形状因子依存性

一方、こうした形状の実現はエッチング技術面からは難易度が高い。まずは現状のプロ セス技術で設計、試作を行って検証した後、プロセス条件を最適化することとした。

②-(5)-3-2-2 キャパシタ形成プロセス

ビアキャパシタは同一基板内で TSV と集積化する必要がある。ここで (1)ビア深さはキャパシタ容量値から決まるのに対し、TSV 用の深孔は基板を貫通する。従 ってキャパシタと TSV ではエッチングする深さを独立して設定する必要がある。

(2)どちらかの埋め込み時には片方が完全に埋まっている必要がある。

という事情があるため同時に形成するのではなく、ビアキャパシタを先に形成して TSV を 後から追加する方式として、ここではキャパシタの形成までを検討する。また、電極材料 として基板を片側の電極に用いる構成も可能であるが、今回は TSV と集積させる点を考慮 して、基板電位から絶縁させ上下電極を Poly-Si で形成する構造とする。これらのことを 考慮して採用したプロセスフローを図②-(5)-3-2-2.1 に示す。

図2-(5)-3-2-2.1 キャパシタ形成プロセス

②-(5)-3-2-3 1回目試作結果

通常、ボッシュ法で今回のように高アスペクト比ビアを形成しようとすると、エッチン グを進める途中でボウイング(中膨らみ)現象が発生することがある。今回のように互い に近接したアレイ状とする場合、この現象によりビア間のSi層が消失する懸念がある。そ のため通常のボッシュ法に対して、より側壁保護を強化したプロセス条件を設定し、エッ チング後の断面を評価した。

結果を図②-(5)-3-2-3.1 に示す。幅 3.9 µm、深さ 95 µm のストレートなビア形状が得られ、懸念していたビア間 Si 層の消失もなかったため、このエッチング条件を本試作に採用した。

図2-(5)-3-2-3.1 テストエッチング結果

試作工程においては Si エッチングでビアを形成した後絶縁用の SiO2 膜を熱酸化で 0. 5µm 形成し、その後下部電極用 Poly-Si 層を 0.5 µm、それを熱酸化して形成した誘電体層 (SiO₂)を 15 nm、上部電極用 Poly-Si 層を 1.4 µm として順次成膜し、その後各層をパター ニングした。さらに配線工程を経てキャパシタを形成した。

出来上がったキャパシタの顕微鏡写真を図②-(5)-3-2-3.2 に示す。またビア部でへき開した断面の SEM 写真を図②-(5)-3-2-3.3 に示す。

図②-(5)-3-2-3.2 試作品外観

高アスペクト比のビア内部に Poly-Si が充填されている。また Poly-Si 層の中間に薄い SiO2層も形成されていることが確認できた。

素子断面

図2-(5)-3-2-3.3 試作品断面

次に電気特性について容量と I-V 特性による耐圧を評価した。ビア型については 57.9± 4.2nF (Avg±3 σ)の容量が得られた(周波数 f =10kHz)。同様に耐圧については 8.3±1.6V が得られた。I-V 特性の代表的なデータを図②-(5)-3-2-3.4 に示す。

図2-(5)-3-2-3.4 I-V 特性

この容量については加工寸法から推定される F_f, A_Rを図②-(5)-3-2-1.3 にプロットして 得られる容量密度値に近く、妥当な値といえる。また絶縁耐圧も膜厚を考慮するとほぼ妥 当な値である。今回キャパシタ素子は4枚のウェハに対して計 320 個形成している。その 他プレーナ型の容量と合わせて測定結果の一覧を表②-(5)-3-2-3.1 に示す。ここではビアキ ャパシタの他、前項で検討し、同時に形成したプレーナ型キャパシタについても示す。プ レーナキャパシタについては目標値を若干オーバーし、ビアキャパシタについては目標値 に約 40%不足する結果となった。プレーナ型については対向面積の調整で対応できるため、 電極パターンを変更することとした。一方、ビアキャパシタについては表面積の増大、お よび誘電体膜厚の低減による容量値の増大を検討した。

252
(19)	⊈n=320)		程特性
	2(11-020)	仕様	結果(ave±3σ)
C1	プレーナ	120pF±15%	136.3±14.4pF
C2	ブレーナ	10±0.25pF	11.6±1.2pF
C3	プレーナ	10±0.25pF	11.3±13.8pF
C4	Ľ7	100nF	57.9±4.2nF
C5	Ľ7	100nF	58.0±4.2nF
C6	Ľ7	100nF	57.9±4.2nF
C7	Ľ7	100nF	57.6±5.4nF
C8	ブレーナ	560pF±5%	631.0±67.2pF
C9	プレーナ	56pF±5%	63.4±6.6pF
C10	Ľ7	100nF	57.7±4.2pF
C11	ピ7	100nF	57.6±4.2pF

表②-(5)-3-2-3.11回目試作での容量測定結果 (f=10kHz)

②-(5)-3-2-4 2回目試作結果

2回目試作においては1回目試作のエッチング条件に対して、より選択比を向上させて エッチング深さを増加させると共に、ビア間のSi層が消失しない範囲でビア幅が増加する ようエッチング条件を最適化した。ビアピッチは不変である。最適化条件でエッチングし た後のビア断面を図②-(5)-3-2-4.1 に示す。幅 4.4 µm、深さ 111 µm の形状が得られた。こ の結果ビアアレイの表面積を1st 試作時に比べて 33%増加させることができた。

また、SiO₂ 膜厚をより薄く 11 nm とする必要があった。ただし極薄 SiO₂ 層は酸化時間が 短くなり、膜厚の制御が困難になることから酸化温度を 1050℃から 850℃に低温化した条 件で酸化時間-膜厚特性を求め、必要な膜厚に対する酸化時間を決定した。

図2-(5)-3-2-4.12回目試作でのSiエッチング結果

ビア形状、酸化膜厚に対して上述の最適化を加えて 2 nd 試作を行い、電気特性を評価した。容量(C-V)測定における代表データを図②-(5)-3-2-4.2 に示す(*f*=10kHz)。

図②-(5)-3-2-4.22回目試作での C-V 測定結果

1回目試作で目標値未達だった容量値に関して 89.8 ± 3.6 nFを得ることができた。個別 の素子としての目標値よりは 10%程度低い値であるものの、容量値の調整はビアの数を変 更することで可能と考える。また、素子面積(0.82mm²)から換算した容量密度では 110nF/mm²であり、3 mm角で1 µFという当初の目標値を満足する。プレーナキャパシタ についても電極パターンの変更により目標値を満足することができた。結果一覧を表② -(5)-3-2-4.1 に示す。

+ - 82.0	<i>I</i> ++±	Wno.1(n=80)	Wno.2(n=80)
441.23	1上1束	Avg.	σ	Avg.	σ
C1(プレーナ)	120pF±15%	127.5pF	13.5pF	127.0pF	14.5pF
C2(プレーナ)	10±0.25pF	12.0pF	7.9pF	11.0pF	3.2pF
C3(プレーナ)	10±0.25pF	10.8pF	2.4pF	10.5pF	0.4pF
C4(ピア)	100nF	89.8nF	1.2nF	88.7nF	0.9nF
C5 (ピア)	100nF	89.9nF	1.3nF	88.7nF	1.3nF
C6 (ピア)	100nF	89.9nF	1.1nF	88.8nF	0.8nF
C7 (ピア)	100nF	89.6nF	1.3nF	88.4nF	0.9nF
C8(プレーナ)	560pF±5%	571.0pF	23.9pF	571.0pF	23.3pF
C9(プレーナ)	56pF±5%	61.1pF	12.2pF	60.4pF	10.2pF
C10 (ピア)	100nF	89.5nF	1.3nF	88.4nF	0.9nF
C11 (ピア)	100nF	89.6nF	1.1nF	88.4nF	0.9nF

表②-(5)-3-2-4.12回目試作での容量測定結果

こうして形成したキャパシタ素子は、その後 TSV 工程を経て TSV と集積化されてイン ターポーザー基板を成した。

②-(5)-3-3 小まとめ

ここでは端末集積化の主要手段となるSiインターポーザー基板のうち、大容量キャパシ タについて検討した。大容量を得るためビア型とし、高アスペクト比のビア加工と埋め込 み性に優れるCVD成膜のPoly-Siを電極材料に選択することにより実際に大容量のキャパ シタが得られて端末小型化に貢献する技術であることを示した。ただし、今後さらに高ア スペクト比が必要になる場合や、電極材料の低抵抗化が必要になる場合は別の電極形成手 法が求められることになる。この点についても新たな成膜技術の開発に取り組んだ。次項 にてその詳細を述べる。

②-(5)-3-4 超臨界流体成膜の必要性

前項では、端末集積化技術開発の一環で CVD-Poly-Si 電極を有した大容量ビアキャパシ タを実証した。今後さらなる高アスペクト比化や電極材料の低抵抗化が要求される場合、 CVD を超える金属膜の埋め込み技術が必要となる。これに応える目的として、Cu の超臨 界流体成膜の要素技術開発に取り組み、次項よりその原理と特徴から説明する。

②-(5)-3-4-1 超臨界流体成膜の原理と特徴

超臨界流体(Supercritical fluid; SCF)とは、臨界温度と臨界圧力(称して臨界点; critical point)を超えた圧縮性高密度流体と定義され、気体と液体の中間的性質を有するといわれる。 代表的に臨界点を示した CO₂の P-T 図を図②-(5)-3-4-1.1a に示す。超臨界流体の密度は液体に近く、拡散係数は気体に近い値を持ち、結果、大きな溶解力を示しつつ、物質輸送性にも優れる。この特徴を利用し、微細構造内に金属有機錯体を比較的高速・高濃度に供給し、基板表面にて H₂等で還元析出反応を促したのが超臨界流体成膜プロセス、supercritical fluid deposition (SCFD)である(図②-(5)-3-4-1.1b)。

高アスペクト比構造への金属膜の均一成膜・埋め込み性を左右する成膜速度式 (Langmuir-Hinshelwood 型)において、成膜種の高濃度供給が決定的な影響を与え、その関係は下記で表される

$$r = \frac{k_s KC}{1 + KC} \tag{3}$$

ここで

r = 成膜速度(nm/min) K = 吸着平衡定数(m³/mol)

 k_s = 表面反応速度定数(nm/min)

C = 原料濃度(mol/L)

である。この反応モデルの成膜速度 r と原料濃度 C の関係を図②-(5)-3-4-1.2 に示す。

図②-(5)-3-4-1.2 Langmuir-Hinshelwood 型反応モデルの成膜速度と濃度の関係

減圧下で成膜が行われる従来技術の一つである CVD 法では、原料供給は原料自身の蒸 気圧に依存するため概して低い。従って式3より KC<<1 であり、成膜速度は原料濃度増加 に対して線形に上昇する(1 次反応)。高アスペクト比構造への成膜・埋込みを行う際、 底部において原料濃度が低下することにより、成膜速度も同様に低下し、結果的に不均一 な膜または開口部付近で閉塞が起きる。一方、優れた溶解力を示す SCFD では、高濃度下 (KC>>1)で成膜が実現でき、式3より成長速度の濃度依存性は0次となる。これは、CVD 法と異なり、高アスペクト比構造の底部においても成膜速度が減少せず、均一な成膜・埋 込みを達成できることを示している。

図②-(5)-3-4-1.3 に SCFD と従来技術を埋め込み性の観点で模式的に比較する。めっき等の液相法は高濃度原料供給を実現できるが、表面張力により微細構造へ浸透することが困難である。それに対し超臨界流体は表面張力が存在しないため、微細構造への輸送特性の面で SCFD の方が有利と言える。CVD との比較においては、上記の通り、SCFD は前者より高濃度な原料供給が可能であり、結果的に埋め込み性がより優れる。

図2-(5)-3-4-1.3 SCFD と従来技術の比較

(2-(5)-3-4-2 従来の研究例と今回の取り組み

超臨界流体の抽出、分離、晶析への利用は古くからあるが、反応媒体として用いる SCFD プロセスの発見からはまだ日が浅く、1999 年にマサチューセッツ大学の J. Watkins 氏らに よりトレンチ加工された Si 上に Pt 薄膜が報告されたのが始まりである¹⁾。後に Watkins らおよび山梨大学の近藤らによって ULSI 多層配線用 Cu 成膜が可能であることが報告され、 SCFD は高アスペクト比構造内への配線形成プロセスとして着目されるようになった²⁾⁻⁴⁾。 なお、「BEANS プロジェクト」(2008-2012)でもこの SCFD を開発対象にし、3 次元ナノ構 造形成プロセスにおける SiO₂-SCFD の 要素技術開発を行ってきた。

今回「グリーンセンサプロジェクト」(2011-2015)にて取り組んでいる端末集積化における大容量キャパシタ開発では、この SCFD プロセスを更に拡張して、高アスペクト比構造

への低抵抗の Cu 電極を形成する。SCFD の量産機での実用例が未だ報告されていないこと から、ここでは \$6~8 インチウェハに対応した大口径装置の開発から、高い面内膜厚均一 性と埋め込み性を実現する成膜プロセスの基礎条件の確立をターゲットに検証を進める。 最終的な大型装置での成膜プロセスの開発目標仕様を表②-(5)-3-4-2.1 に示す。

開発項目	目標仕様	定義
ビア内ボイド率(AR50)	<10%	W1 W2 ボイド率=W2/W1 アスペクト比(AR)=d/W1

表②-(5)-3-4-2.1 大型 SCFD 装置での成膜プロセスの開発目標

次項では SCFD 装置の大型化に対する課題を挙げ、その対応に関する検討結果を述べる。 ②-(5)-3-6 では平面およびビア内成膜条件を確立し、その基礎プロセスデータを基に② -(5)-3-7 でキャパシタ電極作成へ適用する。最後に、実用化に向けた装置の課題を抽出し、 今後の開発項目としてまとめる。

②-(5)-3-5 大口径化での課題と対策

②-(5)-3-5-1 課題①:充分な原料供給の確保

前項②-(5)-3-4-1 の式 3 より、成膜速度と原料濃度は決定的な関係を有しており、他の 反応系成膜技術と同様、SCFD では原料の安定供給はクリティカルなプロセス項目である。 ラボスケールリアクターからの大型化においては、「原料の充分な供給」、すなわち φ 6 ~8 インチ基板全面に原料が供給できるかが重要な課題の一つとなる。

これまで報告されてきた SCFD プロセスはバッチ方式で行われており、原料を直接チャンバー内に設置し、供給と成膜工程を分離するのが特徴である。原料の利用効率は 100% 近く、実績のある方式であるが、反応器が大型化することで、バッチ式では充分に原料が 基板へ供給されない懸念がある。実際バッチ式で検討した際、原料の設置箇所から 3 cm 以 内の領域のみに成膜された。この値は超臨界流体中の原料の拡散長 $\delta(t) = \sqrt{2Dt}$ (拡散係数 $D = 1 \times 10^7 \text{ m}^2$ /s、成膜時間 t = 1 hr) と一致し、原料の供給可能な領域は拡散で律 速されることが分かった。従って、バッチ式はチップ基板を対象とした小型設備には適し ているが、 $\phi 6 \sim 8 \prec 1 \rightarrow 5$ の大型装置には不適切だと考える。SCFD の特徴である高濃度原 料供給を実現するためには、外部からの強制的なフローで原料をウェハ全面に供給する機構が必要と考えた。

フロー式アプローチはバッチ式と異なり、比較的低い原料の利用効率を有するが、原料 を連続的にチャンバーへ送り込み、供給と成膜を同時進行させている。拡散速度より圧倒 的に早い流れ場がチャンバー内全域に発生し、成膜によって原料が消費されてもウェハへ 絶え間なく原料が供給される。バッチ式では成膜により原料は枯渇するが、フロー式では チャンバー内の原料濃度は常に一定であり、充分にウェハ全面へ供給可能である。

今回このフロー方式で装置を設計・導入した。装置の全体構成を図②-(5)-3-5-1.1 に示す。 高圧ポンプおよび熱交換器を通過した CO₂ は超臨界流体となり(scCO₂)、原料が仕込まれた 容器に流し込み原料を溶解させる。その後、scCO₂-原料の流体はチャンバーへ供給され、 成膜が行われる。以降、一連のプロセス実験はこのフロー式装置で進めた。

図②-(5)-3-5-1.1 フロー式超臨界流体成膜装置の構成の概念図と写真

(2-(5)-3-5-2 課題2):原料供給の均一性の確保

前項では、フロー式成膜により充分に原料を供給することが可能であると明確にした。 ただし式3の通り、得られる膜の均一性は「原料濃度の均一性」に依存し、 それは絶対的な供給量だけでなく、「供給の均一性」も重要であると意味する。気体と液 体の中間の性質を有する超臨界流体においては、粘土μは気体に近いが密度ρは液体に近

いため、動粘度 v = µ / ρ が小さい。自然対流を特徴付ける指標、グラスホフ数 Gr は、

$$Gr = \frac{g\beta\Delta TL^3}{\nu^2} \tag{4}$$

で表され、動粘度の逆数の2乗に比例する。ここで

g = 重力加速度(m/s²) $\beta = 体膨張係数(1/K)$ $\Delta T = 温度差(K)$ L = 代表長さ(m)

である。この値が通常の気体に比べて2桁以上大きいため、超臨界流体は気体より対流し やすく、原料供給の不均一性が懸念される。一方、物性値とは別に、*Gr*はチャンバー形状 にも強く依存することが分かる。従って、原料の安定供給に悪影響を及ぼす対流を抑制し たチャンバー設計が、均一な原料供給に対し重要であると考えた。 そこで、フロー式成膜において、均一に原料を供給する最適なチャンバー形状を流体シ ミュレーション(ANSYS/FLUENT)にて検討し、装置の設計上、最も自由度の高い「チャン バー高さ」を形状パラメータとした(式4のLに相当)。周方向の対称性を考慮し、チャ ンバーの1/8 モデルを図②-(5)-3-5-2.1 に示す。原料は中央の1/4 インチ配管から100cc/min で流入させた。チャンバー高さについては、実機での加工性を考慮し、現実的な値として 5 mm、40 mm で検討した。また、排気口は流体の自然な流に沿ってウェハの外周方向に設 置した。

図②-(5)-3-5-2.1 流解析に用いたチャンバーの 1/8 モデル

計算結果を図②-(5)-3-5-2.2 に示す。高さが 40 mm の場合、チャンバー内部全域で対流 が生じ、流動の乱れが確認される。成膜の観点では、対流は基板への安定的原料供給を妨 げ、均一な膜形成を困難にすると同時に、チャンバー内の原料滞留時間を延長して予期せ ぬ気相反応を起こす可能性がある。後者は無駄な原料消費やパーティクル生成等、膜への 悪影響を及ぼすと予想される。一方、5 mm の場合、対流による乱れは抑制され、基板表 面で層流が形成されている。基板外周方向へ一様な流れになっており、原料を安定的に基 板へ供給できる可能性を示している。この結果から、チャンバーは扁平化することで対流 を抑制できる事が明確化され、原料の均一な供給を実現するためのチャンバー形状のデザ インルールが確立できた。

図2-(5)-3-5-2.2 流体の流計算結果。チャンバー高さ(左) 40 mm、(右) 5 mm。

なお、チャンバーの扁平化以外の供給の均一化手法も検討した。例えば、流入口を1つ ではなく、チャンバー上部全体から一様に超臨界流体を流入させるシャワーヘッド構造が ある。詳細結果はここで示さないが、この構造では流体の流はチャンバー高さに関係なく 常に乱れており、安定的な層流形成が確認されなかった。シャワーヘッドからの流入速度 に対して対流の流速は1桁以上高く、実質シャワーヘッド型の意味をなしていなかった。 (バッチ式運転と同様な条件)。 この結果、並びに上記チャンバー扁平化の効果を考慮す ると、対流しやすい超臨界流体を安定的に流すには流れ場が形成されやすい構造が必要と 考える。 シャワーヘッド構造では一様に流入しているため、流速ベクトル方向が排気口 へ収束せず、外周方向への流れ場が形成されなかったと思われる。

表②-(5)-3-5-2.1 フロー式成膜条件

Cu 原料	Cu(tmhd) ₂
還元剤	H_2
基板温度	200°C
全圧力	9MPa
原料濃度	$6.48 \times 10^{-5} \text{ mol/L}$
H2濃度	0.24 mol/L

結果、Cu薄膜はウェハ全面に成膜され、フロー式化により原料が充分に供給されたこと を確認した(図②-(5)-3-5-2.3)。しかし、膜厚分布が生じており、ウェハ中心は薄く、外周に 向かって厚くなっている膜が得られた。面内均一性を最大膜厚(*max*)と最少膜厚(*min*)とで 下記関係式より計算した上、70%程度であった。半導体業界における一般的な薄膜形成技 術に求めらる面内均一性が10%以下と考慮すると、本結果は非常に不均一な膜であると理 解できる。

均一性 =
$$\frac{max - min}{max + min} \times 100$$
 (5)

図②-(5)-3-5-2.3 フロー式成膜後の写真および膜厚分布

均一性が悪い要因として、プロセス側の条件が成立してなかったためだと思われる。最 終的な膜の均一性を決める要因には装置起因とプロセス起因の両方があるとすると、本項 では原料供給機構の均一化に取り組んだが、後者はまだ着手していない。従ってさらなる 均一性の改善には、Cu-SCFDのプロセス条件を検証する必要があると考える。

以上をまとめると、装置の大口径化に伴う課題として、①充分な原料供給の確保と、② 均一な原料供給が挙げられた。小型リアクターで主流であるバッチ式成膜では、 ¢6 イン チウェハ上に充分に原料が供給されないため、本装置開発においてはフロー式を採用した。 また、供給の均一性においては、チャンバー形状の扁平化で対流を抑制することで実現可 能と計算にて示した。実際に扁平形状のチャンバーを設計し、ウェハレベルでフロー式成 膜を行った結果、全面に薄膜が形成されたことを確認した。しかし、膜厚には分布があり、 70%程度の均一性であった。さらなる均一化には供給系統のハードウェアの工夫だけでな く、プロセス条件での膜厚均一性へ最も影響与えるパラメータを明確化し、その最適値を 求める必要がある。次項よりその検討結果について述べる。

(2-(5)-3-6 成膜条件の確立

超臨界流体成膜装置の大型化での課題は主に原料供給機構にあり、いかに供給を十分に かつ均一に確保するかであった。対応として、装置のフロー式化とチャンバー形状の扁平 化によって安定した流れ場を形成し、原料を基板へ層流の状態で供給するチャンバー構造 と設計した。しかし、実際はこれらだけでは不十分であった。この事より、膜均一性の確 保はプロセス側の条件最適化も必要であると言える。

なお、最終的には面内均一性のみでなく、本要素技術開発の狙いである高アスペクト比 構造への Cu の高い埋め込み性を実現するプロセスの確立も必要である。従って、Cu-SCFD のプロセス開発は、下記ステップで進めるとし、次項より Step 1.から述べる。

Step 1. 平面基板上での均一な膜形成の指針の明確と実証

Step 2. 上記結果をベースに、高アスペクト比構造への埋め込み条件の確立

(2-(5)-3-6-1 平面基板上での面内膜均一性の向上

前項②-(5)-3-4-1 の式 3 より、成膜速度に対する影響パラメータには原料濃度以外に反応速度定数 ks があり、これはアレニウス型温度依存性を示す。従って、均一な膜形成条件には、基板温度の均一化が重要であると理解できる。

前項のフロー式成膜結果では、基板中心の膜厚が最も薄く、外周に向かって厚くなって いた。この現象は、装置構成に起因すると考え、以下説明する。基本的に本チャンバーは cold-wall (リアクター壁が基板より低温の状態のこと)リアクターであるため、流体-基板 間には 100℃以上の温度差が存在する。設計上、比較的低温の流体は中心から流入するた め、基板が局所的に冷却され、中心部分の成膜速度が比較的低くなっていると予想される。 対策として、流体と基板の温度差を可能な限り緩和するのが効果的と考え、プロセス上そ れを簡易に実現できる手法として流速の抑制が挙げられる。これは、滞留時間を延長する ことで、基板に到達する前に流体を十分に予熱するアプローチであり、流体の温度計算結 果 (図②-(5)-3-6-1.1) からも妥当な方法と思われる。次に、実際の成膜実験にてその効果 を検証する。

図②-(5)-3-6-1.1 チャンバー内経路長に対する流体温度計算

流速を水準に表②-(5)-3-6-1.1 の条件下で φ 6 インチ TiN ウェハ上に成膜実験を行った。 流速に対して、速い場合と遅い場合をそれぞれ 0.48 mol/min、0.24 mol/min に設定し、得ら れた膜厚分布を断面 SEM で測定した。図②-(5)-3-6-1.2 および図②-(5)-3-6-1.3 にそれぞれ 成膜後の写真と面内膜厚均一性の結果を示す。

	水準1	水準2
総流量	0.48 mol/min	0.24
Cu 原料	Cu(tmhd))2
還元剤	H_2	
原料濃度	3.78×10⁻⁵ m	nol/L
H ₂ 濃度	0.24 mol/	L
基板温度	200°C	
全圧力	9MPa	

表2-(5)-3-6-1.1 フロー式成膜条件

流量 0.48 mol/min の場合、ウェハ中心には成膜されず、得られた膜厚均一性は 18.5%程 度であった(定義上、成膜されていない領域(i.e. min=0)があると、均一性の定量化は難 しいため、ここでは成膜されていないウェハ中心を除いて均一性を計算した)。これは予 測通り、流体の局部冷却によって局所的に成膜不良が起こったと理解できる。膜が全く形 成されない現象は、薄膜形成メカニズムにおける初期核発生に最低限必要な温度に基板が 達しなかったケースが多くある。Cu-SCFDの核発生温度は 180℃程度と報告されている中、 流量 0.48 mol/min の流体温度はそれに対しおよそ 80℃低いため(図②-(5)- 3-5-2.2)、基板 中心部が核発生温度を下回った可能性は十分に高いと思われる。一方、低い流量 0.24 mol/min の場合、ウェハ全面に成膜され、膜厚均一性は 8%まで大幅に改善した。流体の十 分な予熱により冷却作用が低減されたと考えられ、基板中心部でも核発生温度以上を保持 できたからだと思われる。

また、成膜速度も流量を下げることで 50%程度増大した。これは上記同様、流体の予熱 効果によってウェハ表面温度が比較的高くなったことで成膜反応が促進されたと推測する。 流速 0.48 mol/min の場合、膜表面に粉が付着していたが、これは正に基板表面温度と関係 すると考えられる。基板洗浄によって粉は完全に除去することができ、膜内へ取り込まれ ていないことから(膜上に堆積)、成膜後のパージ中に発生したと思われる。メカニズム として、成膜直後における配管内の残留原料が比較的冷えた基板に吹き付けられたことで 流体が臨界点を下回り、原料が粉へと析出したと考えられる。一方、流量 0.24 mol/min の 場合、基板温度が比較的高いため、残留原料を含んだパージ用流体が流入しても析出は発 生しなかったと推測する。

まとめると、流量を下げることで基板温度を均一にかつ比較的高温で保持でき、①面内 均一性が改善、②レートが増大、③気相中のパーティクル生成が抑制することが可能と判 明し、平面上での Cu 成膜の条件を確立できた。

水準	流量	成膜直後の様子	SEM
1	0.48 mol/min	¢6″ ウエヘ 粉付着 Heater	Cu sio ₂ 28.8kv ×38.6k ⁻¹ 1.66.4
2	0.24 mol/min	ф6 [°] ウ1л-т Heater	Cu TiO ₂ SiO ₂ 20.0kV ×30.0k ⁻¹ 1.00

図2-(5)-3-6-1.2 流量水準の成膜後の写真

図②-(5)-3-6-1.3 流量水準における成膜速度分布と膜厚分布

得られた SCFD-Cu 薄膜の XRD 結果を図②-(5)-3-6-1.4 に示す。Cu (002)および Cu (200) のピーク位置より、金属 Cu のパターンと一致した。またここでは示さないが、XPS の組

成分析より、膜中の炭素や酸素等の不純物混入はほどんど見られなかった。Cu-SCFD では酸素を含む有機金属原料を用いても酸化 Cu は形成されず、本プロセスが低抵抗電極形成に適している事が言える。

図②-(5)-3-6-1.4 SCFD-Cu 薄膜の XRD パターン

②-(5)-3-6-2 高アスペクト比構造への埋め込み条件の確立

ここまでは平面ウェハ上における均一な膜を実現するプロセス条件について検討した。 その基礎プロセスデータを基に、SCFD 技術が最も期待される高アスペクト比構造への均 ーな成膜・埋め込み性を検証するため、アスペクト比 50 の Si トレンチへの埋め込み実験 を試み、ボイド率 10%を目標とした。なお、今までの均一性に関する議論はウェハ(マク ロ)スケールでの流量制御であって、以降検討する埋め込み検証はマイクロスケールであ る。従ってグローバルなパラメータに近いバルク流量はトレンチ内での現象に決定的影響 は少なく、ローカルの原料や H2 濃度の方が重要となるので注意が必要である。

実際、表②-(5)-3-6-1.1 の条件そのままで成膜を行うと、トレンチ開口部付近が閉塞され てしまう。SCFD は原理的に Langmuir-Hinshelwood 型反応モデルの 0 次領域で成膜するこ とで完全埋め込みを実現できるが(前項②-(5)-3-4-1 を参照)、原料濃度が十分に高くない と 1 次反応で成膜され、今回のようにトレンチが閉塞すると予想される。なお、理想的な 0 次反応に近づける事は可能であるが、実際に成膜速度の濃度依存性を完全になくすのは 困難と思われる。この事実は埋め込み性に関して言えば、可能な限り遅い成膜速度で埋め 込みを行う必要性を示唆する。なぜなら、高速成膜はわずかにでも存在する原料濃度分布 を顕著化し、トレンチの閉塞に至らせる可能性があるからである。従って、トレンチの埋 め込みにおけるプロセス指針として「原料の高濃度化」と「成膜の低速化」が必要である と考えた。 「原料供給の高濃度化」には、①供給マス流量の増大、②希釈量の低下の主な2種類の 方法がある。①については、最も単純なのがマスフローでモル流量を増大させることであ る。ただし、前項で述べた通り、バルク流量の増大は流体の冷却作用を促進させ、面内均 一性を悪化させる傾向がある(本装置のチャンバー形状の場合である。チャンバー直前の 加熱機構の追加や、リアクター構造の最適化によって流量のプロセスウィンドウの拡張は 可能である)。また、超臨界流体の溶解力を温度、圧力の調整によって増大させることで高 濃度化は可能である。温度低下は溶解力を指数関数的に増加させるが、超臨界プロセスで は絶対的に下回ってはいけない臨界温度(CO₂の場合は*T_c* = 31.2℃)が存在するため、基 本的なプロセスルールとして温度低下は避けなければいけない。一方、圧力も温度と同様 に臨界圧力という下限値は存在するが、その溶解力との関係は温度と逆であり、高圧化に 対して溶解度は増大する。従って、装置仕様が許す限り、プロセス圧力を上げることで原 料の高濃度化が可能である。

上記、高濃度化の手法②においては、Cu-SCFDの還元剤であるH₂の濃度を低下するこ とで希釈量の低下が実現できる。H₂はそもそも基板表面に飽和吸着した原料分子と還元反 応し、Cu原子を析出させるので、Cu-SCFDでは重要な役割を果たしている。ただし、H₂ は超臨界 CO₂の強い溶解力の根本であるクラスタリング(溶質分子を超臨界 CO₂分子が取 囲む現象)を阻害する効果もあるため、原料の溶解度は水素濃度に反比例する傾向を示す。 従って、水素の導入量を適切に下げれば、原料濃度は増大し、反応が0次にシフトする可 能性があると考える。さらに、H₂は原料濃度だけでなく、トータルの成膜速度にも関与し ているため、その濃度制御によって埋め込み指針の一つである「成膜の低速化」も同時に 実現できると期待できる。具体的には、Cu核発生過程ではH₂の基板への解離吸着が律速 しており、H₂導入量が低下すれば成膜速度も同様に低下する。結果、H₂の低濃度化により、 埋め込み指針である「原料の高濃度化」と「成膜の低速化」を同時に実現することができ ると考える。

上記検討を踏まえ、プロセスの高圧化とH2の低濃度化を反映した条件下(表2) -(5)-3-6-2.1)で開口幅 1 µm の Si トレンチ内へ埋め込み実験を行った。ここで、表2 -(5)-3-6-1.1 の条件と比べ、全圧を 9 MPa から 10 MPa まで上げ、H2 濃度を 1/5 にすること で、原料濃度はおよそ 8 倍増大した。

結果、図②-(5)-3.24 の通り、AR50 までボイド率 10%以下が実現でき、Cu-SCFD の高圧 ペクト比構造への埋め込み条件を確立できた。

267

	水準1	水準2
総流量	0.48 mol/min	0.24
Cu 原料	Cu(tmhd))2
還元剤	H_2	
原料濃度	3.78×10 ⁻⁵ m	ol/L
H2濃度	0.24 mol/	L
基板温度	200°C	
全圧力	9MPa	

表②-(5)-3-6-2.1 フロー式成膜条件(低 H2 濃度)

図②-(5)-3-6-2.1 アスペクト比に対するトレンチ埋め込み率

ここでは Cu-SCFD プロセスの条件を 2 段階で確立した。Step 1 では平面上で均一な膜 を形成するため、流量抑制により流体の冷却作用を低減することで基板温度の均一化を図 った。結果的には面内均一性 8%の薄膜が得られた。Step 2 では、Step 1 の条件をベース に、プロセスの高圧化および水素の低濃度化にて原料の高濃度化・成膜の高速化を実現し、 AR50 の Si トレンチへ 10%のボイド率を実証した。高アスペクト比構造への Cu-SCFD プ ロセス条件を確立したことで、実際のトレンチキャパシタ電極形成への適用性を最終検討 項目とし、次項に述べる。

②-(5)-3-7 トレンチキャパシタ電極形成への適用

大容量キャパシタが端末集積化技術へ貢献できることを CVD-Poly-Si 電極を有したビ

アキャパシタで前項にて実証した。今後 CVD ではアクセスできない高アスペクト比構造 への低抵抗金属電極を形成するには、Cu-SCFD 技術が必要となると考える。そこで、本項 では実際に Cu-SCFD 電極を有したトレンチキャパシタを製作し、これまで要素技術開発し てきた SCFD プロセスの有効性を検証する。

SCFD-Cu (100 nm) / Al₂O₃/TiO₂ stack(100 nm) / Si (低抵抗)の MIS トレンチ型キャパシタ 構造のプロセスフローを図②-(5)-3-7.1 に示す。

図2-(5)-3-7.1 MIS キャパシタ成フロー

誘電体層として、誘電率 ϵ 12 を有する Al_2O_3 と TiO_2 の積層膜を用いる。今回基板材料 として低抵抗 Si を用いたため、基板自体を下部電極とした。

図②-(5)-3-7.2 に AR50 のトレンチへの成膜後に得られた構造の断面 SEM 像を示し、上部から底部まで Cu / Al₂O₃/TiO₂ stack / Si 構造が確認できる。FIB 加工での素子分離後、I-V 測定によるリーク電流評価ならびに C-V 測定 (1kV 印加電圧)による容量評価結果を図② -(5)-3-7.3 に示す。

図②-(5)-3-7.2 SCFD-Cu 電極を有したビア型 MIS キャパシタ断面 SEM 像

図②-(5)-3-7.3 SCFD-Cu 電極のビア型 MIS キャパシタの(左)I-V 及び(右)C-F 特性 リーク電流は前項②-(5)-3-2-3 の CVD-Poly-Si 電極のビアキャパシタと比較して高いが、 容量は正常に測定でき(C=830pF, f=10 kHz)、キャパシタとして機能している事が理解で きる。今回は誘電体の膜厚や具体的なビア構造の選定の都合により、容量密度は 12 nF/mm² 程度ではあったが、Cu-SCFD の高アスペクト比構造への Cu 電極成膜の実現性を示し、大 容量キャパシタ向け配線形成技術に SCFD が適していると言える。

②-(5)-3-8 実用化に向けた超臨界流体成膜装置の課題

本開発を通して、プロトタイプとしての大型装置を設計・導入し、実験を進めたが、プロセス技術として実用性を高めるにはスループット、安定性等の面での課題もあることが分かった。それらの一覧を表②-(5)-3-8.1 にまとめる。

装置部位	設計指針	設計項目	効果・狙い
	流体による基板冷 却作用の低減	流体予熱	チャンバー導入直前の流体加熱
	流体の対流防止	チャンバー偏平化	流体の対流による均一性悪化の抑制
メインチャンバー	処理後の基板冷 却の高速化	冷却機構	冷却水系統の追加によるスループット向上
	基板搬送時のチャン バ−解放の回避	ロードロック追 加	チャンパー解放による汚染の抑制、昇温・昇圧(降温・減 圧)時のスループット向上、並びにプロセスの安定化
區約供給 乙兹		配管の保温	ヒーター・断熱材の設置や温媒を通した二重配管構造
原科供柏木杭	一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	配管構造	可能な限り直結にする(圧力損失 = 原料溶解度低下)
地气灭体		アセトン供給タンク 大容量化	タンクの容量増大によるリードタイムの短縮
伊瓦杀税	配管・チャンバー内の 残留H ₂ 除去	真空ポンプ追加	処理後のウェハ回収・メンテナンス時の安全性向上

表②-(5)-3-8.1 超	B臨界流体成膜装置の課題リス -	\mathbb{F}
----------------	------------------	--------------

②-(5)-3-9 まとめ

ここでは端末集積化の課題となり得る異なるチップ間の配線接続やキャパシタ等の受 動部品を対象として従来技術に代わる集積化技術の実証と、その要素技術開発に取り組ん だ。まず、Si 基板上に TSV と集積可能な CVD-poly-Si 電極を有した大容量キャパシタの作 成に成功し、小型・集積化が可能であることを実証した。次に、今後キャパシタは更なる 高容量化、低抵抗化が必要であると見据え、要素技術として Cu の超臨界流体成膜による 埋め込み技術をφ6~8 インチ対応の大型装置開発から成膜プロセス条件の確立まで行っ た。その実証として、高アスペクト比 50 の MIS キャパシタの Cu 電極を実際作製し、端末 集積化に対する超臨界流体成膜技術のポテンシャルを示した。最後に、本開発で設計・導 入したプロトタイプ装置による検証から、今後 超臨界流体成膜技術の更なる発展に向け て、実用化の課題を抽出・明確化した。

②-(5)-3-10 参考文献

1) J. Watkins, J. Blackburn, T. McCarthy: "Chemical Fluid Deposition: Reactive Deposition of Platinum Metal from Carbon Dioxide Solution", Chemistry of Materials, pp. 213-215 (1999 Jan.)

- J. Blackburn, D. Long, A. Cabanas: "Deposition of Conformal Copper and Nickel Films from Supercritical Carbon Dioxide", Science, pp. 141-145 (2001 Oct.)
- E. Kondoh, H. Kato: "Characteristics of copper deposition in a supercritical CO₂ fluid", Microelectronic Engineering, pp. 495-499 (2002 Oct.)
- International Technology Roadmap for Semiconductors (ITRS) 2003 edition, Interconnect (<u>http://www.itrs.net</u>)

②-(5)-3-11 謝辞

今回報告した Cu / Al₂O₃/TiO₂ stack / Si MIS キャパシタにおいては、東京大学 霜垣教授、 杉山准教授、百瀬助教、近藤氏によりサンプル作成並びに電気特性評価をして頂き、心よ り感謝申し上げます。

②-(5)-4 高アスペクト比超低リーク大容量キャパシタ向け Via 形成技術の開発【(株)ア ルバック】

<Via 形成技の位置付け>

省エネ化に必要なデバイス構造の一つに、小型・低背化は必要不可欠な項目である。小型・低背化には薄膜技術や半導体あるいはマイクロマシニング技術等様々な微細加工技術 が挙げられる。本プロジェクトでは従来実装の樹脂インターポーザーに代わって、半導体 微細加工技術を応用し、シリコンを用いたインターポーザーを作り込むことで、これまで 以上の高密度配線可能な実装基板を提供可能とすることでグリーンセンサ端末の高密度集 積化実装技術を実現し、それを基にデバイスの小型・低背化と実証を目指す。本プロジェ クトでは、このシリコンインターポーザの中に大容量のキャパシタを埋め込み内蔵するこ とでより小型化・低背化を目指す。半導体基板上でのキャパシタ形成の従来技術の一つに、 プレーナ型キャパシタがある。しかし、もっと大容量なキャパシタを小面積に製作する為 には。横型構造を縦型とし、且つ高密度に配列することが理想と考えた。その為には高度 なシリコンの深掘り技術が必要となる。

従来のシリコン加工技術としては、ウェット加工とドライ加工の主に2種に分けられる。 本プロジェクトの様な結晶シリコンへの任意な加工方法としては面方位依存の無い、プラ ズマを使う MEMS 向けのシリコン深掘り技術「ボッシュ法」エッチングが最も有用である。 ボッシュ法は世界的にも実績が多く、プロセスの種類も幅広く応用が利くことが利点であ る。一方で高アスペクト比なエッチング程、プロセスのカーボン負担が大きくなり、その 付着膜の洗浄除去工程への負担も大きい。エッチングで使用するガスは大気温暖化係数 (GWP)の大きい材料が主流なことから、グリーンなデバイスを実現するための基本思想に マッチしていない点がデメリットとして挙げられる。今後は環境配慮型の深掘りエッチン グへの転換が不可欠であり、結果、本プロジェクトでは非ボッシュなエッチングのプロセ スについても開発テーマにすることで、本プロジェクトで開発したシリコン深掘り技術が 将来にわたって広く普及していくような色合いを出し、他の深掘り開発との差別化も図っ た。因みに、半導体工程でのシリコン深掘り技術として、ディープトレンチ形成技術が古 くから使われている。これはボッシュ法では無く、一括エッチングするプロセスがメジャ ーであり即ち非ボッシュエッチングの類である。しかしこの手法はハードウェア及びプロ セスの特性上、本プロジェクトの様な MEMS サイズの高アスペクト比加工ができない。

以上から、本プロジェクト実現の為に、グリーンな MEMS 仕様向けのドライエッチング プロセス技術を開発することは、グリーンセンサ端末化機能集積化技術の開発を進める上 で重要な位置付けとなる。 <Via 形成技の目標>

本研究開発は主に三つの目標柱を持つ。先ず、従来技術であるボッシュエッチング及び 非ボッシュエッチングの各プロセス技術における異方性エッチング機構を理解し、その結 果、デバイス製作にもっとも適した高効率なシリコン深掘り技術の指針を出す事を第一の 目的柱とした。

次に、非ボッシュ法のエッチング性能の可能性を明確にすべく、側壁荒れ 10nm 以下の 平滑且つアスペクト比 10 以上、含有カーボン量が従来(ボッシュ法)比 70%以上の削減でき る環境配慮型のグリーンプロセス技術の実現を第二の目標柱とした。

最後に、上記成果を基に、大容量化キャパシタの試作・検証に必要な高密度パターン仕様として、直径 4um、アスペクト比 20 以上の高アスペクト比な Via パターンエッチング技術の開発及びデバイス試作・実証検証を第三の目標柱とした。

②-(5)-4-1 ボッシュエッチングと非ボッシュエッチング:第一の目標柱

図②-(5)-4-1.1 は本プロジェクトに用いたシリコン深掘りエッチング装置の断面概略図 を示す¹⁾⁻²⁾。本平板型プラズマ源は、高密度プラズマ生成を目的に、アルバックが独自に 開発した低自己インダクタンスなアンテナを搭載している。結果、従来型プラズマに比べ、 約2倍(当社比)の高密度プラズマ生成の実現に成功している(図②-(5)-4-1.2)。一方、シリコ ン基板を搭載するステージ側には微弱な RF バイアスを印加できる仕組みをとっており、 プラズマ中の正イオン反応種を適度な入射エネルギーで基板へ引き込み、シリコンの異方 性エッチングを行うことが出来る。ウェハサイズは最大 12 インチまで対応できる。ウェハ 冷却方式は静電チャック(ESC)を採用し、シリコンウェハ裏面と ESC のギャップには He ガスを一定圧で充填し、シリコン基板がエッチングで一定の温度以上に上昇しないように 冷却されている。

図②-(5)-4-1.1 シリコン深掘りエッチング装置

図②-(5)-4-1.2 プラズマ源と電子密度の比較

因みに図②-(5)-4-1.2 の電子密度は、基板ステージ直上にシングルプローブを設置し、事 前の測定を行った。測定の際、実プロセスプラズマを用いると、プローブ先端にカーボン 系のデポ、あるいはプラズマ中のフッ素ラジカルとの反応で消耗する等、測定トラブルを 引き起こす可能性がある為、ガスはアルゴンを用いた。また、測定の際にはバイアスパワ ーを OFF 状態とし、純粋な ICP (Inductive Coupling Plasma:誘導放電)プラズマでのプラズマ 診断を行うことで、従来プラズマ源との比較を行っている。

ICP RF 仕様としては、一般的な 13.56MHz を採用。最大印加パワーの使用は 3kW。一方 で、バイアスパワーは低周波の 2MHz を採用。最大印加パワー使用は 1kW を用いた。2 MHz バイアスは、将来的には高アスペクト比へのイオン入射効率を制御必要な場合も想定し、 イオン種のエネルギー制御可能な周波数帯で且つ量産実績のある周波数帯を選んだ。

エッチングガス仕様としては、先ず、ボッシュエッチングの場合、シリコンの等方エッ チング工程として「SF6」、エッチング側壁のパッシベーション工程として「C4F8」をそ れぞれメインガスとして用いた。次に、非ボッシュエッチングには、「SF6」と「O2」の 混合ガスに添加ガスとして「SiF4」を採用した「SF6 + O2 + SiF4」の3種ガス混合プラズ マのプロセスを採用。「SF6 + O2」プラズマへのSiF4添加法は、SiOF 膜生成する PE-CVD の論文を参考にした³⁾。大気温暖化係数(GWP : Global Warming Potential)は、CO2 を1とす ると、SF6 が 23900、C4F8 は 8700、SiF4 は Cl2 と同じ不安定なガスカテゴリーの為、GWP にはほとんど影響が無いと判断できる。つまり非ボッシュエッチングは C4F8 を不要とす るために、ボッシュ法と比較してもグリーンなプロセスの立ち位置にある。

図②-(5)-4-1.3 は溝幅 2um、エッチング深さ 50um、アスペクト比 25 のボッシュエッチン グの SEM 写真を示す。プロセスシーケンスは一般的なボッシュ法で説明されるように、 1) SF6 で Si の等方エッチング、2) C4F8 で CVD(Chemical Vapor Deposition)、3) Ar プラズマ でボトムのポリマー除去工程、の3工程を繰り返すエッチングを行った。図から、エッチ ング形状としては典型的な異方性形状が実現できた。エッチング側壁を良く観察するとパ ターン側壁に「スキャロップ:Scallops」と呼ばれる周期性をもった側壁荒れも確認され、 ボッシュエッチングの特有の形状が得られている。ボッシュエッチング工程では異方性を 維持するため、C4F8 プラズマから解離生成した CxFy ラジカルを用いたデポジション工程 を繰り返し行う為、溝パターン開口部付近には CF ポリマー膜が蓄積している。後述する 非ボッシュエッチングではこのようなデポ膜が見られないことが判明している。

図2-(5)-4-1.3 溝幅 2um のボッシュエッチング

図②-(5)-4-1.4 非ボッシュエッチング、SF6/O2 混合プラズマ

図②-(5)-4-1.5 非ボッシュエッチング

次に、非ボッシュエッチングの形状 SEM 写真を図②-(5)-4-1.4 に示す。エッチング形状 は、SF6 / O2 混合比調整で大まかな制御が可能であることがわかる。さらに横方向の小さ なエッチングを抑制するために SiF4 を添加し、その添加量をプロセスパラメータとして最 適化を施せば図②-(5)-4-1.5 のような φ 10um 及び φ 50um において、サイドエッチングの極 めて小さい且つ平滑なエッチングが実現できることが分かっている。図②-(5)-4-1.6 は、図 ②-(5)-4-1.3 のボッシュエッチングと同じパターンである線幅 2um のシリコンエッチング 用パターンをデンソーが準備しアルバックで、エッチング深さ約 50um までエッチングし た SEM 写真を示す。エッチングマスクは SiO2 を用いた。開口部に若干のエロージョンの 様な側壁荒れがみられる。しかしながら全体にわたって平滑なエッチングが実現している ことが分かる。本プロジェクトにおいて、SF6 + O2 + SiF4 プロセスを用いた非ボッシュエ ッチングにおいて、アスペクト比 25 以上の平滑トレンチ技術を達成した。また、ボッシュ エッチングも同じモジュールでアスペクト比 25 の異方性形状が得られたことで、目標とし た両エッチング技術を同モジュールにて達成することができた。

図2-(5)-4-1.6 溝幅 2um の非ボッシュエッチング

②-(5)-4-2 Via エッチングプロセス:第二の目標柱

前項はトレンチェッチングの事例であったが、グリーン端末集積化ワーキンググループ でのキャパシタ仕様検討の結果から、より大容量なキャパシタ形成の為にはトレンチに代 わって高密度な高アスペクト比微細 Via が必要であると結論。従ってデバイスの試作検証 の為には前項で構築したトレンチプロセスを発展させ、Via 仕様での高アスペクト比エッ チングのプロセス開発が必要と至った。

図②-(5)-4-2.1 非ボッシュエッチング、(a)アスペクト比 9.2、(b)アスペクト比 14

図②-(5)-4-2.1 は、直径 5um のテストパターンを準備した上で、非ボッシュエッチング法 の Via におけるエッチングプロセス可能性を検証すべくエッチング時間依存性を確認した 結果を示す。 エッチング時間以外のエッチング条件は図②-(5)-4-1.6 の非ボッシュでのトレ ンチエッチングと同条件を用いている。図②-(5)-4-2.1(a)から、Via 仕様にてアスペクト比 「9.2」を実現。第二の目標柱である、アスペクト比「10」には僅かに及ばなかったものの 概ね達成できる見通しの結果と判断し、さらにアスペクト比 15 を想定し、エッチング時間 を延長した結果を図②-(5)-4-2.1(b)に示す。結果、エッチング形状(b)をよく観察すると、開 口部付近のパターン側壁でサイドエッチングが進行し、垂直異方性から順テーパー形状へ とシフトし始めていることが分かる。つまりこの結果より、トレンチエッチングではアス ペクト比 20以上を達成できる技術だとしても、Viaパターンではエッチング機構が変化し、 トレンチプロセスに比べて、1.エッチング速度の低下、2.パターン側壁の保護効果が弱く なる、等が判明した。従って、エッチング時間をさらに延ばすと側壁 Break を引き起こす と考え、アスペクト比 20以上の為の深掘りプロセス設計を再度見直し、エッチング条件の 再構築を行う必要があると考察した。そこで基本に戻り、アスペクト比 20 を達成した時の トレンチエッチングにおける側壁保護機構を比較することで Via エッチング課題の解決を 図れないかと考え、エッチング側壁のアスペクト比に応じた XPS(X-ray Photoelectron Spectroscopy)測定を行った。図②-(5)-4-2.2 はその測定内容を示す概略図である。X 線源は 単色化させた Alkαを用い、分解能を上げることで膜質評価精度を向上させている。光電 子の脱出角度は75度とした。また、今回はエッチング深さ方向、Top、Middle、Bottomと 3か所を測定する為に、X線スポットの直径を10umまで絞る測定方法を行い、側壁分析の 位置測定精度を上げている。今回の取り組みは、実際の高アスペクト比エッチングされた パターン底部域の側壁が、どのような膜で保護され、そして垂直なエッチング形状を維持 するのかのエッチング機構解明に役立つデータ取得に期待される。

図②-(5)-4-2.2 トレンチエッチング側壁の XPS 測定条件

表②-(5)-4-2.1 卜	レンチエッチン	´グ側壁の XPS	5 測定結果
----------------	---------	-----------	--------

	Area Com	ment	C1s.cf4	C1s.cf5	C1s.cf6	O1s.cf1	O1s.cf2	F1s	Si2p.cf1	Si2p.cf2
	Chemical	state	-CF	-CF2	-CF3 or -O-CF2	C Oxide, SiOx	-O-CF2 or 吸着種	-CFx	elemental	SiOx
Bosc	n Etching	Bottom	7.2	9.4	5.9	6.5	1.1	39.8	19.9	1.7
Bosc	n Etching	Middle	8.5	11.8	6.9	3.6	0.9	49.3	8.1	0.8
Bosc	n Etching	Тор	10.0	12.4	6.7	1.4	2.1	54.0	1.2	<0.01
	-									
ドッシ	ユエッチ rea Comm	ング	C15	015	F1s	Si2n cf19	ii2n cf2			
ドッシ 	ュエッチ rea Comm nemical st	ング nent ate ID	C1s C-0 ?	01s SiOx	F1s C-F	Si2p.cf1S element al	ii2p.cf2 SiOx			
ドッシ	ュエッチ rea Comn nemical st. h [Etching	ング nent ate ID Bottom	C1s C-0 ? 2.3	O1s SiOx 43.8	F1s C-F 1.0	Si2p.cf1S element al 29.6	ii2p.cf2 SiOx 13.6			
ドッシ C 非Bos 非Bos	ユエッチ rea Comm nemical st. h Etching h Etching	ング nent ate ID Bottom Middle	C1s C-0? 2.3 1.9	01s SiOx 43.8 47.1	F1s C-F 1.0 0.7	Si2p.cf1S element al 29.6 25.6	ii2p.cf2 SiOx 13.6 15.4			

表②-(5)-4-2.1 はその結果を示す。ボッシュエッチングの場合、深さ方向に沿って側壁が CF2 ベースのフルオロカーボン(CF)膜で被膜されていることが分かる。また、深さに応じ てこの CF 膜は徐々に感度を下げていることから膜厚も徐々に薄くなっていると推察され る。この CF 膜被膜の傾向は、ボッシュエッチング法で一般的に説明されている通りで、 エッチングパターンの側壁はCF2 ライクなポリマー膜で保護されることで異方性が実現し ていると考察される。興味深い点は、アスペクト比 20 以上の底部領域においても側壁は CF ポリマーが到達し保護膜として機能していることを示唆する結果についてである。通常、 のプラズマ CVD ではここまでの高アスペクト比構造に対してはステップカバレージがほ とんど取れない。しかしながら、わずかなポリマー膜さえ被膜すれば SF6 の等方エッチン グ工程においては十分な保護効果を持つと考察できる。一方、非ボッシュエッチングの場 合、薄い SiO2 膜が深さ方向にほぼ同じ膜厚で形成されていることが本プロジェクトで初 めて明らかとなり、異方性機構としては、この薄い SiO2 膜が保護膜として寄与している ことを初めて証明した。非ボッシュエッチングもボッシュエッチングと同じく、高アスペ クト比の底部領域においてもパターン開口部とほぼ同等な SiOx 膜が側壁に形成している 点は側壁保護膜形成機構の詳細な機構解明に今後極めて役に立つ基礎データであると考察 できる。以上のエッチング手法による異方性保護膜の XPS 分析比較結果は、次項で述べる 新規プロセス考案に繋がる重要な成果であった。

また、XPS 分析を基に、両エッチング手法によるエッチング後の残留カーボン比較も行った。表②-(5)-4-2.1 からボッシュエッチングの場合、分析元素全体の約 30%を占めることが分かる。従って目標である残留カーボン量 70%削減をクリアする為には全体の 9%以下が達成値となる。ちなみにボッシュエッチングの場合、もっとも多く残留していた元素は「フッ素」であった。一方、非ボッシュエッチングでの側壁残留カーボン率は、測定した全体元素の 2.5%以下であった。結果、目標とした 9%以下(70%削減)を達成できた。今回、非ボッシュエッチングで観察された炭素は XPS そのものの観察が ex-situ 観察であった為、サンプルオペレートや断面割断時等の外的影響に因る可能性が高いと考察する。非ボッシュエッチングには基本、炭素含有系のエッチングガスは使っていない。この点においても非ボッシュエッチングはグリーンプロセス思想とマッチしている。

②-(5)-4-3 アスペクト比 20 以上の Via エッチングプロセス:第三の目標柱

a. ボッシュと非ボッシュの融合プロセスの可能性検証

図②-(5)-4-2.1(b)及び表②-(5)-4-2.1 の結果から、高アスペクト比の実現には、非ボッシュ エッチングの側壁保護膜をもっと強化すことが必要であると考えた。ボッシュエッチング の側壁保護膜はパターン開口部付近が最も厚い。そこでエッチング深さに応じ、途中から ボッシュエッチングを導入し、側壁保護を強化する、すなわち「ボッシュ法と非ボッシュ 法の融合プロセス」を試みた。図②-(5)-4-3.1 はその結果の一例を示す。非ボッシュエッチ ング後、ボッシュエッチングを導入することで、パターン開口部の広がりが大きく抑制で きていることが分かる。さらにボッシュエッチング条件を最適化することで、アスペクト 比 16 の異方性エッチングを達成し、第二の目標柱を達成した。しかし、本ワーキンググル ープで設定したデバイス検証を満たす Via 形状はアスペクト比 20 の Via 構造の為、さらな るプロセス最適化を行った。

図②-(5)-4-3.1 ボッシュ法と非ボッシュ法の融合プロセスへの取り組み

b. ボッシュと非ボッシュの融合したマルチステッププロセスの構築

上項の結果は、ボッシュ法がエッチングパターン開口部の側壁保護の効果に極めて有効 である点を明らかにした結果と言える。サイドエッチングをもっと強固に抑制する為、初 期のエッチング法を、非ボッシュ法からボッシュ法に変更し、エッチング初期の段階で側 壁の保護膜を強固に形成、その後、非ボッシュエッチングプロセスでエッチング形状の最 適化を行う思想を考案し、プロセス条件の最適化を行った。最終的に、1. ボッシュ法 ⇒ 2. 非ボッシュ法 step-1 ⇒ 3. 非ボッシュ法 step-x といった複数ステップの融合プロセスを開 発。図②-(5)-4-3.2 に示すシーケンスにて、アスペクト比 25 以上の Via エッチングを達成。 スループットに関しては次に記述するが、従来ボッシュ法の約 2 倍の 2 um/min と、実施計 画の目標を達成した(図②-(5)-4-3.3)。

図②-(5)-4-3.2 融合エッチングプロセスのステップシーケンス

図②-(5)-4-3.3 高アスペクト比 25 以上のエッチング結果

従来技術の基準としてきたボッシュエッチング法は、フッ素ラジカルを主体とするシリ コンエッチング機構を用いる為、エッチング深さのパターンサイズ依存性を持つことが広 く知られている。従って、微細パターンの場合、エッチング速度がさらに低下することが 予想される。パターンサイズに依存したエッチングレートシフトを予想することを目的に、 J. Kiihamaki 等は最少直径 10 um、最大直径 120 um の各 Via パターンに依存したエッチン グ深さシフトのデータを取得し、そのデータと計算結果を元にエッチング予想の信憑性に ついて議論している⁴⁰。エッチング手法はボッシュ法で、論文での Via エッチング性能は、 直径 10 um、エッチング深さ 200 um、アスペクト比 20 の時のエッチング速度が 2.2 um/min と報告されている。彼等はこれらの結果と分子流モデルの相関で、微細パターンのエッチ ング性能を半定性的に説明できると発表している。この論文を参考にすると、本プロジェ クトである直径 4 um のアスペクト比 20 のエッチング速度は、約 1 um/min と見積もること ができる。加えて、J. Kiihamaki 等のエッチングでは側壁平滑性に関しては特に記述が無く、 少なく見積もっても 100~200 nm 程度のスキャロップが発生していると想定される。従っ て、本プロジェクトで開発したボッシュ法と非ボッシュ法の融合プロセスは、これら従来 のボッシュ法のみの方法とは一線を介した、高い技術優位性を持つ技術であると言える。

②-(5)-4-4 グリーンセンサ端末機能集積化技術の開発ワーキングでの3mm角の実装モジ ュールの実証

前項までの成果を基に、小型化を実現可能とする高密度 Via キャパシタ形成の為のエッ チング技術を提供し、デバイス試作とその実証に貢献し、第三の目標柱を達成した。その 他、本エッチング技術は従来加工法比で約2倍と高スループット化できた事で、デバイス 製造の低コスト化も貢献できる。グリーンなシリコン深掘りエッチングプロセスの開発に 成功した。

②-(5)-4-5 まとめ

小型化を実現可能とする、高密度 Via キャパシタ形成の為のエッチング技術を構築。本 技術は従来加工法比で約2倍と高スループット化できた事で、デバイス製造の低コスト化 も貢献できるエッチングプロセス技術を開発した。

ボッシュ法と非ボッシュ法両方のプロセストレンドデータを取得。この結果と表面分析 結果を基に、非ボッシュエッチングを最適化した結果、カーボン含有ガスを用いないエッ チングプロセスが構築できた。

ボッシュ法と非ボッシュ法の組合せ最適化により、直径4um、エッチング深さ101um、 アスペクト比25の高スループットなエッチングプロセスを開発。デバイス試作と低リーク 大容量キャパシタの動作検証に貢献した。

②-(5)-4-6 参考文献

1) Y. Morikawa, T. Murayama and K. Suu ; "Very Uniform and High Rate TSV Etching Process in Advanced NLD Plasma" Int. Symp. on AVS 57th, Albuquerque, New Mexico, USA, 2010.

 Y. Morikawa, T. Murayama, M. Yoshii, K. Suu ; "A Novel TSV Etching using NLD and VHF CCP Plasma For 3-D Stacked Devices." Proc. International Symposium on Microelectronics (IMAPS), NC, USA, Oct.31-Nov.4, 2010, pp. 180–184.

3) Sang M. Han and Eray S. Aydil ; J. Vac. Sci. Technol. A 15, 2893 (1997)

4) J. Kiihamaki ; J. Vac. Sci. Technol. A 18, 1385 (2000)

②-(5)-5 集積モジュール化技術の開発【大日本印刷(株)】

②-(5)-5-1 集積モジュール化技術の位置付けと目標

<集積モジュール化技術の位置付け>

グリーンセンサネットワークシステムの普及のために、取りつけ場所を選ばない設置の 自由度を持つ安価なグリーンセンサ端末が求められる。

<集積モジュール化技術の目標>

本研究では端末の低消費電力化、小型化を実現すべく、半導体チップや MEMS 製造に用いられるシリコンの超微細加工を応用した集積化技術を開発した。

②-(5)-5-2 300mmTSV シリコンインターポーザの開発

グリーンセンサ端末の小型化には、シリコン基板上への各機能の集積化が有効である。 究極的には、シリコンインターポーザ上に、MEMS センサ、制御 LSI、無線 LSI、受動部 品などを集積しワンチップ化する事で、端末サイズのみならず、電力消費を抑え、且つ電 気特性的にも優れた端末が実現可能となる。しかしながら一般的にシリコン加工のプロセ スコストは高く、シリコンインターポーザの製造コストがそのまま端末の価格を押し上げ る要因となってしまう。したがって、シリコンインターポーザをグリーンセンサ端末に適 用するためには「低コスト化」が必須である。シリコンインターポーザの低コスト化のた めにはウェハの大口径化が有効である。

本研究では、現在汎用的に用いられる Φ 8 インチ(ϕ 200mm)ウェハと比較して、有効 面積が2倍となる Φ 12 インチ(ϕ 300mm)ウェハを用いた TSV シリコンインターポーザ のプロセス開発を行った。

図②-(5)-5-2-1.1 プロセスフロー

TSV シリコンインターポーザのプロセスフローを図②-(5)-5-2-1.1示す。始めに、¢300mm のウェハを厚さ500µmにバックグラインドする。次にドライエッチングによってウェハに 貫通孔を形成、内壁をSiO2の真空成膜によって絶縁加工する。この絶縁膜はTSVの電気 特性(リーク特性)を左右するため成膜品質を高度に調整・管理する必要がある。続いて、 めっき用のシード層を成膜し電気銅めっきによって貫通孔を完全にCuで充填する(充填 めっき)。この充填めきでは空隙(ボイド)が無い様に埋め込む必要がある。次に、CMP によりウェハ表面の平坦化処理を行ったのちウェハの表面に層間絶縁膜層を設けTSV 部 分を開口させ、めっき用のシード層を成膜、電気銅めっきにより配線層を形成する。裏面 も同様に再配線層を形成してTSV シリコンインターポーザを得る。以上のよう、TSV シ リコンインターポーザのプロセスには、充填めっきと配線めっきがあり、どちらのめっき 工程においても大面積に対して均一なめっき厚が得られるようめっき条件を最適化する事 が主な開発課題となる。

②-(5)-5-2-2 Φ300mm ウェハ対応 Cu 充填めっき装置の開発

行った。これらシミュレーション結果を反映し、めっき槽構造やアノード電極および遮蔽 板を最適設計した。

図②-(5)-5-2-2.1 めっき厚シミュレーションと実測定厚

図②-(5)-5-2-2.1 はシミュレーションのモデル、シミュレーション結果の 3D 図、および めっき膜厚のシミュレーション値と実測値の比較グラフである。グラフの通り、シミュレ ーション結果と実測値と良好な一致を示し、シミュレーションの有効性が確認された。こ れにより電極や遮蔽板、槽内設計の短縮化が図る事ができた。

シミュレーション結果を反映して本プロジェクトで新規に導入した \$ 300mm ウェハ対応 Cu めっき装置の外観を図②-(5)-5-2.2 に示す。酸洗浄等の前処理槽、めっき槽、洗浄槽などの複数槽からなるめっき装置であり、めっき条件をプログラミングする事で所望の条件でのめっきが可能である。

図②-(5)-5-2-2.2 ø 300mm ウェハ対応 Cu めっき装置

また、めっき液の自動分析、調整機能がついており、一定のめっき品質を維持しつつ長 期間の稼働が可能である。

図2-(5)-5-2-2.3 TSV の充填めっき品質

本装置で Cu 充填めっきした ϕ 300 mmTSV シリコンインターポーザの外観と、TSV の充 填状態を図②-(5)-2-2.3 に示す。厚み 500 µm のウェハに対して、径 50 µm の TSV を形成し た。作製した ϕ 300 mmTSV シリコンインターポーザの TSV 品質確認を X 線透過観察、お よび断面観察により行った。TSV 内部にボイド等の空隙は見られず、Cu めっきによって 良好に充填できていることが確認された。

②-(5)-5-3 集積化ワーキンググループによる実証

集積化ワーキンググループ活動では、各社が開発した集積化の要素技術をグリーンセン サ端末用の無線モジュールへ適用し、その技術の有効性を実証する事を目標とした。グル ープメンバーは、大日本印刷(株)のほか、(一財)マイクロマシンセンター、産業技術総合研 究所、(株)デンソー、(株)アルバック、である。

②-(5)-5-3-1 シリコン上への端末機能集積化

センサ端末は、センサ部、無線部、電源部等の各種コンポーネントから構成されている。 その中で、シリコン上への端末機能集積化技術を無線部(無線モジュール)に適用した。 無線モジュールの中で、無線 LSI (RF-LSI)の動作に必要な機能をシリコンインターポー ザへ集積化しワンチップ化(集積化チップ)する(図②-(5)-5-3-1.1)。

集積化チップは TSV を有するシリコンインターポーザをベースに構成される。シリコンイ ンターポーザには、本プロジェクトで開発されたビアキャパシタが内蔵され超低消費電力 型 RF-LSI が搭載されている。また RF-LSI の動作に必要な抵抗素子(市販のチップ抵抗部 品)、水晶発振器(市販チップ部品)も搭載されている。集積化チップのサイズは、厚み 400 μm(シリコンインターポーザ部のみ、部品厚は含まず)、約4 mm 角である。TSV は Cu めっきで充填され径はφ50 μ m である。配線層は表裏各 3 層形成される。

図2-(5)-5-3-1.1 集積化チップ

サイズに関しては、今回集積化技術の検証を第一の目標としているため、余裕を持たせ たレイアウト設計にしており4 mm 角程度であるが、技術的には更なる小型化が可能であ る。

②-(5)-5-3-2 集積化技術を適用した集積化チップの作製

集積化チップのプロセスフローを図②-(5)-5-3-2.1を元に説明する。

図②-(5)-5-3-2.1 集積化チップのプロセスフロー

始めに、ウェハを準備し、ドライエッチングにてビアキャパシタ用のビアを形成する。 ビアの開口寸法は4µm角、深さは100µm、ビアピッチは8µmである。その後、導体層、 誘電体層を成膜しビアキャパシタを得る。高アスペクト比(アスペクト比25)構造のビア を高密度で配置する事で高い容量密度を得る事が可能となる。先に形成したビアキャパシ タとの位置整合を取りTSV形成に進むが、ビアキャパシタへのダメージを与えないよう予 め保護膜層を全面に形成しておく。TSV形成は、ドライエッチングで貫通孔を形成、真空 成膜による絶縁化処理を施したのち、ウェットめっきプロセスにて貫通孔をCu充填する。 充填めっき後、CMP 処理にて表面を平坦化するが、この際もビアキャパシタへのダメージ を配慮する必要がある。その後配線層を表裏3層形成し、キャパシタ内蔵TSV シリコンイ ンターポーザを得る。最表面のパッドは、Au めっき処理を施している。続いて部品の実装 工程に進むが、始めに、市販チップ部品である抵抗、水晶発振器を半田実装する。次に RF-LSI 実装に進む。RF-LSI はチップ to ウェハ(C2W)プロセスによるフリップチップ実 装である。RF-LSI の端子部に Au スタッドバンプを設け、ノンコンダクティブペースト (NCP)を用いてシリコンインターポーザ上へ実装する。電気的接合は Au/Au 接合によっ て確保している。

上記プロセスにて形成したビアキャパシタ内蔵シリコンインターポーザの断面写真を 図②-(5)-5-3-2.2 に示す(TSV を形成、CMP 処理後の写真)。

図2-(5)-5-3-2.2 ビアキャパシタ内蔵シリコンインターポーザの断面

(2)-(5)-5-3-3 試作における開発課題

試作における課題として、ビアキャパシタ側の取出し電極であるアルミパッド(Alパッド)と TSV との電気的接続の確保が挙げられる。Al パッドは、ビアキャパシタ形成の最終工程である熱処理によって最表面に変質層が形成されている。図②-(5)-5-3-3.1 に示す Al パッド部表面が荒れている事が見て取れる。

図2-(5)-5-3-3.1 Al パッドと TSV との電気的接続
この変質層を除去し、清浄な Al 面を出したのち、Cu との電気接続を確保する必要がある。図②-(5)-5-3-3.2 に Al パッド部の模式断面図を示す。赤い点線が変質層である。Cu 配線との安定的な電気接続を得るために、コンタクトホール形成後に変質層を除去する(クリーニング)するプロセスが必要である。

図2-(5)-5-3-3.2 Al パッド部の模式断面

最適なクリーニング条件を得るため、EDX 分析による変質層の同定を行った(図②-(5)-5-3-3.3)。分析の結果、変質層は、Al(アルミ)、O(酸素)、Ti(チタン)、N(窒素)からなる事が分かった(同図の左側)。Alはパッドの母材由来であるので、除去すべき対象はO、Ti、およびNである。変質層を除去するため種々の処理条件を検討した結果、酸性溶液のウェット洗浄と、ドライエッチング処理を組み合わせる事が有効である事を見出した。最適化した処理条件によって変質層を除去したところ、O、Ti、N が除去され、AlとCuが良好に接続されている事を確認した(同図の右側)。

図2-(5)-5-3-3.3 EDX 分析による変質層除去効果の確認

テスターによる Al パッドと Cu 配線との電気的接続の確認も取れたため以降の配線形成

工程へ進んだ。

配線形成工程における他の課題として、ウェハの反りが挙げられる。プロセスが進む毎 にウェハの反りが大きくなる傾向があり、ウェハの搬送、吸着固定等に支障を来す懸念が あった。今回、ウェハ反りに対しては特別な処置は施さなかったが、安定してプロセスを 進行するためには対応が必要であり、今後の課題と言える。

配線形成完了後の写真を図②-(5)-5-3-3.4、および図②-(5)-5-3-3.5 に示す。先に述べたとおり、LSI 搭載用パッド、およびその他部品を搭載するためのパッドの際表面は Au めっき 処理が施されている。

図2-(5)-5-3-3.4 配線形成完了後の拡大写真

図2-(5)-5-3-3.5 配線形成完了後の全体写真

②-(5)-5-3-4 集積化チップの評価

完成した集積化チップ(図②-(5)-3-4.1) について、RF-LSIの動作チェックを行った。ビ アキャパシタ内蔵シリコンインターポーザを介して RF-LSI 側に電源を投入、RF-LSI のシ ステムクロックが動作している事を確認した。これにより、内蔵したビアキャパシタが機 能している事が確認され、集積化技術を適用した集積化チップの開発に成功した。

図②-(5)-5-3-4.1 集積化チップ

②-(5)-5-4 まとめ

φ 300mmTSV インターポーザー量産化に向けた要素技術を確立した。

新規に開発した充填めっき装置を設置し、めっき厚のシミュレーションを用いながら Cu 埋め込み技術の開発を進め、 ϕ 300mm ウェハ内で均一性良くボイドレスの充填めっき技術 を確立した。表裏に再配線層を設けた ϕ 300mmTSV インターポーザーを試作、TSV 抵抗 2.43m Ω 、10V 印加時のリーク電流 1nA 以下、耐圧 200V 以上の電気特性を得る事ができた。

プロジェクトで開発された RF-LSI を実装しビアキャパシタを内蔵した TSV シリコンイ ンターポーザを開発、無線モジュールとしてワンチップ化を実現した。

シリコンインターポーザ上に実装した RF-LSI の動作検証において、内蔵したビアキャ パシタが正常に機能する事を確認した。

②-(5)-6 まとめ

グリーンセンサ端末機能の集積化を目指して、ウェハレベルフレキシブル集積化技術と して、センサ信号処理・無線通信用カスタム LSI 及びウェハレベル・チップ to ウェハ(C2W) 接合実装プロセスを開発し、高アスペクト比超低リーク大容量キャパシタのトレンチ形成 技術と絶縁膜・配線技術によるビアキャパシタ埋込み型 Si-インターポーザー(実装基板)上 に実装し、外形寸法 3 mm 角の端末本体部チップ(集積化モジュール)として実証した。

ウェハレベルフレキシブル集積化技術の開発において、グリーンセンサ用共通プラット フォームを設計し、2×5cm 寸法への実装に反映した。また、センサ信号処理・無線通信用 カスタム LSI を開発し、当 LSI と水晶振動子と R/C チップの3 種類の部品を搭載した外形 寸法 3 mm 角のプロトタイプモジュールとして実証開発した。さらに、1~2.54 mm 角の LSI-TEG チップを Si-インターポーザーウェハに配線接続と同時に集積化するウェハレベ ル C2W 接合実装プロセスを開発し、集積化モジュール試作に反映した。

高アスペクト比超低リーク大容量キャパシタ向け絶縁膜・配線技術の開発においては、 極薄誘電体薄膜形成技術、poly-Si 電極 CVD 技術、超臨界電極薄膜形成技術のプロセス開 発を通して、Si-インターポーザーと集積化可能な poly-Si 電極を有した大容量キャパシタ を開発し、ビアキャパシタ埋込み型 Si-インターポーザーの試作開発に反映させた。

高アスペクト比超低リーク大容量キャパシタ向けトレンチ形成の開発においては、アス ペクト比 20 以上のキャパシタビアを高スループットでエッチング加工するプロセス技術 として、ボッシュエッチングと非ボッシュエッチングを組合せて、高アスペクト比と高ス ループットを両立させたエッチングプロセスを開発し、ビアキャパシタの試作開発に反映 させた。

集積モジュール化技術の開発においては、Si-インターポーザー量産化に向けた要素技術 を確立し、ビアキャパシタを一体化した Si-インターポーザーを試作開発するとともに、カ スタム LSI チップと水晶振動子と抵抗チップを当インターポーザーに実装して、外形寸法 3 mm 角のセンサ端末本体部チップ(集積化モジュール)として試作実証した。

②-(6) 低消費電力無線通信技術の開発【産業技術総合研究所】

(2-(6)-1 研究開発の背景と目標

<研究開発の背景>

無線通信技術は Shannon-Hartley の通信容量定理の発表¹⁾ 以降、通信効率を理論限界に近づけるため、数多くの研究開発がなされてきた。ただし、それらは電力が十分に使える状況であること、情報量が少なくとも数 kbyte 以上であることが前提条件であり、電力が制限されていることや、送信情報が数 10bit 程度である無線センサネットワークシステム

(WSNs:Wireless sensor networks) でそのまま利用することは適切ではない。近年、WSNs に適した ZigBee や Bluetooth LE など、低消費電力無線通信プロトコルが開発され、特にマ ルチホップ通信を低消費電力で行う研究が盛んに行われている²⁾。またハード面では端末 が低消費電力なスリープ状態から高速で立ち上がる研究³⁾ などがある。マルチホップ通信 では自立的に端末同士が通信網を構築できるため、端末をばら撒くだけで広範囲のモニタ リングが可能となる。但し、この手法では各端末がそれぞれ受信動作を行い、且つ自立的 にネットワークを構築するなど、端末の負担が大きいことが課題である。

ここで、本グリーンセンサネットワークシステムの前提条件について整理すると、下記のようになる。

(1) 室内照明からの微弱なエネルギーを電力源とする

(2) 設置場所はオフィスや店舗、工場などであり、そのサイズは、大きくて 100m 程度

(3) 扱う情報は、電力や塵埃など緊急性、すなわち通信の高信頼性を要するものではない

これまでの多くの WSNs では、端末は電池駆動であったが、(1)から、グリーンセンサ端 末は極微弱で不安定なエネルギーしか利用できないため、特に消費電力の大きい無線通信 は、これまで以上に徹底した低消費電力化を行うことが必須であるといえる。(2)の通信距 離について、松井らは、シングルホップ通信とマルチホップ通信の消費電力は、通信距離 が 120m 以下ではシングルホップ通信の方が低消費電力であると結論付けている⁴⁾。本シ ステムでは半径で考えると通信距離は 50m となるため、シングルホップ通信が有利といえ る。(3)に関しては、通常の無線通信システムでは、例えば通信の信頼性を高めるために電 文に通信エラー検出のための符号を付加する、つまり電力を使用して信頼性を高めている が、本システムでは(3)により不要にできる可能性がある。このような、シングルホップ通 信で、100%の理論的通信信頼性を求める必要がない無線通信環境において無線通信の低消 費電力化の研究開発を行った例は過去に見当たらない。 <研究開発の目標>

本研究の目標は、上記グリーンセンサネットワークシステムの条件における、最適な低 消費電力無線通信技術の開発である。目標値は、ほとんどの WSNs で利用されている一般 的な2値周波数偏移変調(2-FSK: Frequency shift keying)に対して、最大 1/10以下となる 通信時間の電力とすること、及び基本計画にある、300MHz 帯と 900MHz 帯の 2 つの周波 数帯が同時受信可能であり、同時接続端末 1000 以上、受信感度-130dBm 以下の受信機を 開発することである。

②-(6)-2 設計

最初に、②-(6)-1 記載のグリーンセンサネットワークシステムの前提条件を設計可能な 情報に変換する。(1)の電力源に関しては、可能な限り小さくだが、本プロジェクトでは目 標にあるように一般的な通信と比較して 1/10 以下となる通信時間となるようにする。(2) は、通信距離を直径 100m とすれば、50m の通信距離で対応可能である。(3)に関して、藤 本らはコンビニエンスストアなどに無線電力センサを取り付けて電力モニタリングを行っ ている⁵⁾が、その際、90%以上の受信率であれば有効なデータを得ることができると述べ ている。そのため、本研究では、1000 端末の同時接続に対して、1%の電文衝突確率を許 容することとする。図②-(6)-2.1 に、本研究での無線通信の条件を示す。

図2-(6)-2.1 本研究での無線通信の条件

周波数は、まずは315MHz帯の特定小電力無線規格^のに準ずるものを目指し設計を進める。受信機は AC 電源に接続可能であり、その場合には電力を十分に使えるため、受信機の機能を高くして送信側の負担を低減することが設計のポイントとなる。

図②-(6)-2.1の条件では、端末の無線通信に関わる仕事は送信するだけである。送信電力

は通信時間(s)×送信電力(W)で表せる。送信電力は、PLL (Phase Locked Loop)や PA(power amplifier)などの電力が主なものであり、例えば PA の改善に関しては、Hyoung-Seok らが 1.2V で駆動可能な高効率 PA の開発をしている⁷⁾が、効率を画期的に改善することは難し い。一方、通信時間とは、無線センサ端末がスリープ状態のときからの水晶発振の立ち上 がりや各種設定動作などの無線通信準備時間と、電波を発している通信時間の合計である。 例えば SiliconLabs 社製 Si446 x^8)は送信前までに 3 μ Ws 程度の電力消費が必要である。 通信 時間に関しては、仮に一般的な無線通信として、3.3V、10 mA で 1ms の通信時間を必要と すると、その消費電力量は 33 μ Ws であり、通信時間での電力消費が支配的であることがわ かる。従って、本研究では通信時間を低減する技術の開発を行う。

通信時間は、通信速度(symbol/s) × シンボル数で定まる。シンボルとは、例えば2値変 調の場合は1シンボル=1 ビットであり、4 値変調の場合は1シンボル=2 ビットとなり、端 末が送信する1つの物理量 (例えば FSK であれば周波数) に何ビットが含まれているかを 示すものである。図2-(6)-2.2 は従来の電文フォーマットと本研究が目標とする短電文フォ ーマットを示している。従来の電文には大きく分けて2つの情報があり、1つは電文を受 信するために必要な情報、もう1つは送信したい情報である。送信したい情報は極力少な くすべきであり、例えば測定時刻を示すタイムスタンプなどは、測定した時間精度が重要 である場合を除き、受信側で受信時に付加すればよいものである。本研究ではこのような 送信データの最適化については扱わず、最適化した後、送信情報量は不変でシンボル数を 低減する技術について検討を行う。一方、受信に必要な情報とは、ここでは一般的なもの としてプリアンブルとユニークワード、CRC(Cyclic Redundancy Check)を扱う。プリアンブ ルは、多くの場合 2byte から 8byte 程度の 01 の繰り返しであり、送信側と受信側のクロッ ク源が異なることから生じる周波数やシンボルタイミングのずれの補正や、受信電力増幅 時にアンプのゲインを調整し、飽和を防ぐために必要なものである。ユニークワードとは、 受信した電文のどこからが送信したい情報なのか示すものであり、通常 lbyte から 2byte 程度である。CRC は、送信したい情報にある計算を行った結果であり、この値と、受信機 側で同じ計算を行った値とを比較することで、受信した電文が正しい電文であるかを判断 するものであり、通常 lbyte から 2byte 程度である。本研究では、これらを削除可能な受信 機を開発するとともに、削除した影響を明らかにする。

まずは通信速度についての検討を行い、次にシンボル数の低減化手法についての検討を 行ったうえで、変調方法を定める。変調方法が定まれば、具体的な受信手法が定まるため、 その手法における上記の受信に必要な情報を削除する影響を明らかにする。

図②-(6)-2.2 従来の電文フォーマットと本研究が目標とする短電文フォーマット

②-(6)-2-1 通信距離と、送信電力、通信速度の関係

本プロジェクトでは、通信距離Dを一定とした場合、無線センサ端末が最小の消費電力、 つまり最短の通信時間となるような通信プロトコルを開発する。上記にあるように、通信 時間は通信速度(symbol/s)とシンボル数で決まる。ここでは通信速度について検討を行う。

一般的に、通信速度を早くすれば、通信時間は短くなるが、フィルタの帯域幅が増加す るため、受信側の SNR(Signal to Noise Ratio)が低下する。一方、通信速度を遅くすれば、通 信時間は長くなるが、フィルタの帯域幅を低減できるため、受信側の SNR は増加する。従 って、低速通信の場合、高速通信と同一の SNR でよい場合には、送信電力を低減すること ができる。ではどちらが低消費電力で通信することが可能か、ということを示すため、こ こでは通信距離と、送信電力、通信速度の関係を明らかにする。境界条件は、通信距離と、 受信部での SNR が一定、の2点である。この条件のもとで1ビットを送信するために必要 な電力量 Pb(Ws/bit)を示す式を導く。

ここでは、Shannon-Hartleyの通信容量の式¹⁾と、Friisの伝達公式を応用する。

$$C = B \log\left(1 + \frac{S}{N}\right)$$
(1)
$$P_R = \left(\frac{\lambda}{4\pi D}\right)^2 G_T G_R P_T$$
(2)

C:通信速度(bit/s)、B:通信路の周波数帯域(Hz)、S/N:送信された信号のSNR、P_R:
 受信電力(W)、D:通信距離(m)、λ:キャリア周波数の波長(m)、G_T:送信アンテナのゲイン、G_R:受信アンテナのゲイン、P_T:送信電力(W)である。1ビットを送信するために必要な電力量 P_bは下式となる。

$$P_b = \frac{P_T + \varepsilon}{C} \tag{3}$$

ここで、 ε は水晶振動子やパワーアンプなどの無線信号を生成するのに必要な電力である。ここで、N を熱雑音電力とするとNは kTB'(k=1.38×10⁻²³:ボルツマン定数(J/K))、T: 絶対温度(K)、B':最終段のフィルタの帯域幅)で表せる。これと、(1)から(3)式を用いるこ とにより、Pb は下式となる。

$$P_b = \frac{\frac{P_R D^2}{\alpha} + \varepsilon}{C} = \frac{kTB' \left(\frac{C}{2\overline{B} - 1}\right) D^2 + \alpha\varepsilon}{\alpha C}$$
(4)

 $\alpha = G_T G_R \left(\frac{\lambda}{4\pi}\right)^2 \tag{5}$

ここで、B は電波法 ⁶により 1MHz、B'は最小にすべき項目であるのでここでは B'=C と する。また、T=300K、G_T=G_R=1、ここでは 315MHz 帯について考えると、 λ = 3×10⁹(m/s) / 315(MHz)=0.95m、 ϵ については、 ϵ =49.25mW (文献 ⁸⁾の送信時電力から、電波法で定めら れている 315MHz 帯特定小電力規格における最大送信電力 250 μ W を差し引いた値)と ϵ =0mW としたとき、P_b と C の関係は以下のグラフとなる。

図2-(6)-2-1.1 通信速度 C と 1 ビットを送信する電力 PRの関係

ε=0の理想状態では、通信が低速なほど低消費電力の通信が可能であるが、実際には無線信号を生成する電力 ε が必要である。この場合、大きな電力で高速に通信するほど低消費電力で通信が可能になるが、一方で電波法により送信電力は制限されている。ここでは、
 315MHz 帯の特定小電力無線局の規格 ^のに準ずる場合を考えると、その場合、最大送信電

力は 250μW となる。この電力で 50m の通信が可能な最大の通信速度が最適値となる。無 線通信距離は、送信機から受信機までに複数の経路(マルチパス)を経た、複数の位相や 電力の異なる電波が到来することにより受信アンテナ部での受信電力が低減するフェージ ングの影響などがあり、最適通信速度を算出することは難しい。本研究では、参考資料⁹⁾ をもとに、通信速度を 4.8ksymbol/s とした。

②-(6)-2-2 最適なシンボル数低減化手法の検討

一般的に、シンボル数を低減させる技術としては多値化がある。多値化とは、1 シンボ ル数に含まれるビット数(bit/symbol)を増加させる技術である。前章で通信速度を確定した が、シンボルを基準とする通信速度(symbol/s)は同じでも、多値化数の増加により実際の情 報の通信速度(bit/s)を増加することが可能となる。本章では、無線センサ端末の低消費電力 化に適した多値化手法の検討を行う。

通常、デジタル通信では1ビット当たりのエネルギー密度対雑音電力密度比(E_b/N_0)に対 するシンボル誤り確率 P_E を通信方式の比較に用いるため、これを指標とする。 E_b/N_0 は下 式で表せる¹⁰。

$$\frac{E_b}{N_0} = \frac{S}{N} \left(\frac{W}{C}\right)$$

(6)

あるビット誤り率を実現するために必要な E_b/N₀ が低いほど高効率、つまり端末が低消 費電力で通信できる、ということができる。

多値化できるパラメータとしては、振幅、周波数、位相があり、それぞれ振幅偏移変調 (ASK: Amplitude shift keying)、周波数偏移変調(FSK: Frequency shift keying)、位相偏移変調 (PSK Phase shift keying)として変調を行う。ここでは比較的 P_E が良くない ASK に関しては 述べないこととする。FSK では、変調に用いるそれぞれの信号が互いに受信に影響を及ぼ さない直交信号を用いるものと、そうでないものに分けることができる。互いに影響を及 ぼしあう信号同士では、多値化するにつれて E_b/N_0 を増加しなければ必要な P_E を維持でき ないことは明らかであるため、直交信号を用いない FSK についても、本通信方式には不適 ということができる。一方、PSK については、少なくとも 2 値変調のなかでは最も低い E_b/N_0 で通信が可能であり ¹⁰、且つ4 値変調である QPSK(Quadrature PSK)まで直交性があること から、検討する必要がある。そのため、ここでは直交信号を用いた周波数偏移変調(MFSK) と、多相位相偏移変調(MPSK)についての E_b/N_0 を比較する。これらのシンボル誤り率 P_E は下式で表せる ¹¹。

$$P_E = \frac{2}{\pi} \int_0^\infty exp \left\{ -\left(u - \sqrt{R_d}\right)^2 \right\} \left[\int_0^{utan\pi/M} exp(-v^2) dv \right] du$$
(MPSK) (7)

図②-(6)-2-2.1 E_b/N₀とシンボル誤り率 P_Eの関係

$$P_E = \sum_{k=1}^{M-1} \frac{(-1)^{k+1}}{k+1} {}_{M-1}C_k exp\left(-\frac{kR_d}{k+1}\right)$$
(MFSK) (8)

ここで、 $M(=2^{j})$ は多値化数、 $_{M-1}C_k$ は組み合わせ、 R_d は $j \times E_b/N_0$ を示している。これをグラフに示すと図②-(6)-2-2.1 のようになる。

このグラフは、多値化数 M が 8 以上であれば MFSK の方が高効率の通信、すなわち低 消費電力の通信が可能であることを示している。前章では、通信速度を 4.8ksymbol/s と定 めたが、この場合、受信機の最終段のフィルタの最低帯域幅は 4.8kHz にすることができる。 電波法で定められた占有帯域幅は 1MHz である。この 1MHz をフィルタの帯域幅で割ると 208.2 となる。つまり、208 値の多値化が可能であるが、M は 2 の累乗であるため、M の 取りうる最大値は 128(=2⁷)である。従って、1MHz の帯域幅制限のもとでは、MPSK より も MFSK の方が低消費電力で通信できることがわかる。ここで注意すべきことは、MFSK により変調された信号を、受信側で広帯域に取得し、周波数-電圧変換回路を用いて復調し ないことである。この場合にはフィルタの帯域が広くせざるを得ないため、SNR が劣化す る。本研究では、受信された信号を高速フーリエ変換(FFT: Fast Fourier Transform)する。こ の場合には、フィルタ帯域は FFT の周波数分解能になるため、SNR を高くすることができる。この FFT で取得した時系列スペクトラムを解析して復調を行う受信機の開発を行う。 もう1点注意すべきことは、MFSK は多値数を増加するほど帯域を広く使用することになるため、多元接続に問題が出る可能性があることであるが、これについては②-(6)-2-6 で述べる。

ところで、拡散符号を利用する変調方法として CCK(Complementary code keying)という 変調方法がある¹²⁾。拡散符号単独では変調出来ないが、PSK と組み合わせて多値化数を増 加させるものである。この組み合わせとしては、FSK であっても構わない。また、復調時 には 3 ビット以上の軟判定であれば信号の劣化はほとんどないことがわかっており¹³⁾、 SNR の点でも問題はない。スペクトル拡散通信には、主に直接拡散(DS: Direct Spread)方式 と、周波数ホッピング(FH: Frequency Hopping)方式がある。本研究では比較的受信が容易な DS を用いて通信速度を増加させる。

②-(6)-2-3 送受信機の構成

図2-(6)-2-3.1 は送信機、図2-(6)-2-3.2 は受信機の概略構成図を示している。この例では、 4 通りの拡散符号を用いている。16 ビットのデータの内、MSB(most significant bit)の2 ビ ットを拡散符号の4 通りの選択に用い、残りの14 ビットを用いて直接拡散方式に用いる2 つの周波数を定める。例えば図2-(6)-2-3.1 では、16 ビットデータ"0100 0110 1001 0011 10" を送信することに対して、MSB の2 ビットの"10"に対応する拡散符号パターン 0001 を選 択し、残り14 ビットで拡散符号パターン"0"に対応する周波数 312.3640MHz、"1"に対応す る 312.0985MHz を選択する。これらのデータを PLL に伝達し、PA から4 チップを出力す る。受信側では、アンテナから入力された4 チップはアナログフロントエンドでデジタル データに変換され、FPGA (field-programmable gate array)にその信号を入力する。FPGA で の FFT により生成された時系列周波数スペクトラムを用いて逆拡散を行い、送信側と受信 側で共通の周波数と拡散符号決定テーブルを用いて復調を行う。

図2-(6)-2-3.1 送信機の概略構成

図2-(6)-2-3.2 受信機の概略構成

②-(6)-2-4 周波数軸からみた本通信プロトコルの特徴

これまでに、315MHz 帯で、通信速度を 4.8kbps, 変調方法を 128-FSK とする通信プロト コルを定めた。ここでは、周波数軸でみた本通信プロトコルの特徴をまとめる。前述した ように、315MHz 帯のテレメータの特定小電力無線規格⁹で定められた周波数範囲は、送 信出力が 250µW の場合は 312MHz から 315.05MHz までである。この周波数帯を図② -(6)-2-4.1 のように 4 つの周波数幅 614.4(=4.8kHz×128)kHz の分け、それぞれのグループに グリーンセンサ端末を 250 個配置する。図②-(6)-2-4.2 はそれぞれのグループの詳細を示し ており、(a)は従来の手法、(b)は本通信プロトコルの場合の帯域について示している。端末 の帯域は、基本的には通信速度に応じて定められ、仮に 500kbps の場合には少なくともそ れだけの帯域が必要であり、この場合には電波法で定められた占有帯域幅を有効に使用し ていると言える。しかしながら、今回のように通信距離を長く設定したい場合には、通信 速度を低速にせざるを得ない。その場合には図②-(6)-2-4.2a のように使用可能な帯域の 1% にも満たない帯域幅しか使用しないことになる。本手法では、上記のように長距離通信の ために帯域幅を狭くしたとしても、それを並列に複数使用することで占有帯域幅を有効に 使用する通信プロトコルである。

図②-(6)-2-4.1 周波数帯域の使用方法について

図②-(6)-2-4.2 従来センサとグリーンセンサの周波数帯域の使用率の違い

②-(6)-2-5 受信に必要な情報を削除した場合の影響

本章では、プリアンブル、ユニークワード、CRC を電文から削除した場合の影響について考察する。

a. プリアンブル

プリアンブルは、受信した信号の周波数やシンボルと、受信回路の同期や、受信信号の 増幅時にアンプのゲインを調整し、飽和を防ぐために必要なものである。まず、周波数の 同期について考察を行う。本受信機では FFT により得られた時系列周波数スペクトラムを 用いて、どの周波数に信号が存在するかを判断する。FFT は、入力信号を離散的に周波数 軸に分解する。例えば、310MHz と 311MHz に信号を分解する FFT に 310MHz の信号を入 力した場合、損失はゼロであるが、310.5MHz の信号が入力された場合には 310MHz と 311MHzに 3dB 低減された信号が現れる。従って、プリアンブルがない場合の周波数同期 に関する損失は最大 3dB である。周波数のずれは、クロック源(通常は水晶振動子)の周 波数偏差 ful に依存する。例えば、±20ppm の標準的な水晶振動子をもとにして 315MHz の信号を生成する場合、±6.3kHzのずれが生じる。前章において、通信速度は4.8ksymbol/s と定めたため、FFT の分解能周波数帯域幅(RBW: resolution bandwidth)は 4.8kHz とする。そ の場合、周波数偏差が±7.6ppm以下でなければ隣の周波数にピークが現れ、ガード周波数 帯などがなければ復調に誤りが生じる。例えば EPSON 製 TG-5006CJ は VC-TCXO(Voltage Controlled Temperature compensated crystal oscillator)であり、リフローなどで生じる周波数偏 差を電圧で制御することが可能となる。そのため、対温度安定性:±0.5ppm、対負荷変動 安定性:±0.2ppm、対電源電圧安定性:±0.2ppm の偏差を合わせた±0.9ppm が初期周波 数偏差の最大値となる。データシートには初年度の経時変化は最大±1ppm とあり、仮に この変化が毎年生じる場合には、5年間で最大±5.9ppmの偏差が生じることになる。一方、 受信機は校正が可能と考え、温度に対してのみ偏差が生じるとすると、最大で±6.4ppmの

303

偏差が送受信機間で生じることになる。その際の受信電力の損失 Plos は下記の式で表すことができ、最大 2.37dB の損失が生じることになる。

$$P_{los} = 10 \log \left(1 - \frac{f_{tol}}{RBW} \right) \qquad \left(\frac{f_{tol}}{RBW} < 0.5 \right)$$
(9)

尚、 $F_{tol}/RBW \ge 1$ の場合は P_{los} は3dBとなる。

次に、シンボル同期について以下に述べる。本受信機におけるシンボル同期は図② -(6)-2-5.1 であらわすように受信側で行う FFT の FFT フレームと受信されたシンボルの同 期となる。ここで、FFT フレームとは、FFT を行うデータ群の枠であり、例えば、128 ポ イントの FFT を行うならばその枠には 128 ポイントの AD 変換された信号データが入る。 図②-(6)-2-4.1a の信号①は FFT フレームとシンボルの同期がとれているが、図②-(6)-2-4.1b の信号②については FFT フレームと同期がとれていない。同期がとれていない場合の損失 は、下式となる。

$$P_{los\,fr} = 10 log \left(1 - \frac{T_{dif}}{T_{FFT}} \right) \qquad \left(\frac{T_{dif}}{T_{FFT}} < 0.5 \right) \tag{10}$$

ここで、T_{dif}はFFT フレームとのずれ時間、T_{FFT}はFFT フレームの時間幅である。

図②-(6)-2-5.1a,b のように、FFT フレームを AD 変換されたデータに対して切れ目なく連続的に行えば、すべてのデータの解析を行えるが、FFT フレームとシンボルとの最大のずれは T_{FFT}/2 となり、(10)式により 3dB の損失となる。これを、図②-(6)-2-5.1c のように FFT フレームが重なるように FFT を行うことで、このずれ幅を低減することが可能になる。本受信機ではシンボル時間 T_S に対して、T_S/4 毎に FFT を行うこととした。この場合、最大の T_{dif} は T_S/8 となるため、損失は 0.58dB 以下となる。尚、拡散符号を使用する場合には上述のシンボルはチップとなるが、結果は同じことである。

次に、受信信号増幅時のアンプゲイン調整について考察する。受信信号は、受信機のア ンテナまで到達する間に様々な影響により減衰され、例えば-120dBmにまで電力が低減さ れる。一方、受信機の近くにある端末の信号はそれほど減衰されず、例えば-30dBm であ ったりする。この場合、90dB ものレンジを受信しなければならないが、低分解能の AD 変 換を使用する場合には、ゲインを調節して受信信号波形を乱さないようにする必要がある。 そのため、プリアンブルを用いてゲイン調整を行う場合があるのだが、これについては、 受信機が複数の受信経路を持つことで対応する。つまり、それぞれの経路のゲインが異な るようにすればダイナミックレンジを拡大することができ、この問題を解決できる。

ここまでの考察により、2.95dB以下の損失で、プリアンブルなしでも受信が可能である ことがわかった。

図②-(6)-2-5.1 フレーム同期について (a)同期ずれなし、(b)同期ずれあり、(c)FFT フレー ムを1シンボルあたり4とした場合のイメージ

b. ユニークワード

ユニークワードは、受信された電文に対して、例えばどこからが送信内容を示すフレー ムなのかを示す情報である。図②-(6)-2-5.2 はそのイメージを示しており、送受信機間で共 通のユニークワードと、受信された電文内の情報を比較することで、同一のパターン以後 を送信内容と判断することができる。プリアンブルは、上記にあるように場合によっては 増幅されすぎて波形が乱れ、復調できない場合もあるため、例えばプリアンブルの先頭部 は正しく復調されない可能性がある。そのため、正しく復調されるプリアンブル以後にユ ニークワードを置き、上述したようにパターンマッチングを行う。ここで、本受信機は上 記よりプリアンブルを電文に含めないと定めている。その場合のユニークワードの必要性 はないと考えられる。本受信機は上記のとおり、アンプのゲイン調整は必要なく、電文の 先頭から正しく復調することが可能である。この場合、送受信機間で予め電文フォーマッ ト(最初に ID、次が温度データ、・・)を定めておけばフレーム同期の必要はない。以上 より、本受信機ではユニークワードを用いる必要はないことを示した。

図2-(6)-2-5.2 ユニークワードのイメージ

c. CRC

CRC は図②-(6)-2-5.3a に示すように、CRC の計算手法を送受信機間で共通とし、受信された電文に対して同じ計算を施し、その値と受信された CRC の値を比較することで、電文が正しく受信されたかを判断する電文の誤り検出手法である。この手法は一方で、計算手法が異なれば別システムでの電文を排除することも可能である。本受信機では FFT を用いて、時系列周波数スペクトラムを取得する。従来の手法では、電文の生データのような復調前の情報はメモリに貯めこまれることはないため、電文を時間軸で解析することができない。しかしながら、本受信機ではメモリに情報を貯めこみ、時間軸で解析することができるため、電文の構造を解析することが可能になる。

図②-(6)-2-5.4 は、本受信機で行う電文構造解析についてのイメージを示すものである。 図②-(6)-2-5.4a を受信する電文構造とする。すなわち、2 シンボルの電文であり、それぞれ のシンボルの周波数はデータに依存する。図②-(6)-2-5.4b は他システムからの信号を示し ており、もし何もしなければ、各シンボルの2つの組み合わせをすべて受信することにな る。図②-(6)-2-5.4c は本受信機で行う電文構造解析の手法を示している。①では定められ た電文の前後の受信信号強度はノイズレベルであることをチェックする。②では、各シン ボルの受信強度が同程度であることをチェックする。この2つのチェックにより、他シス テムからの不要信号や、ノイズにより生じた誤りのある電文の受信を防ぐ。

以上より、短電文化が 2.95dB 程度の損失で可能であることが分かった。ここで、1000 端末同時接続で、測定データ 20bit を 4.8ksymbol/s 送信する場合で従来の 2FSK と本通信プ トコルで送信する場合の送信時間を比較する。2FSK ではプリアンブル: 32bit、ユニークワ ード: 16bit、ID: 10bit, 測定データ: 20bit, CRC: 8bit、計 86 シンボルを送信する。一方、本 通信プロトコルでは ID をにより、送信シンボルは 4 シンボルとなる。プリアンブルなど を削除することによる損失が 2.95dB なので、この分送信速度を低減することにより同じ SNR とすると、-2.95dB はおよそ 50%なので、8 シンボルの送信を行えばよいことになる。 従って、本通信プロトコルを用いることにより送信時間は 8/86 = 1/10 となり、これだけの 分低消費電力化が可能であることがわかる。

306

図②-(6)-2-5.3 CRC における従来手法と本手法の比較

図②-(6)-2-5.4 本受信機で行う電文構造解析についてのイメージ

次章では残った問題である多元接続について考察する。

②-(6)-2-6 帯域と多元接続

MFSK は広い周波数帯域を使用することになり、多元接続に問題がある可能性がある。 本システムでは 1000 端末の多元接続を目標としているため、ここでは多元接続について検 討を行う。

多元接続には、それぞれの端末が別のキャリア周波数を用いることで電文が衝突しない ようにする周波数分割多元接続(FDMA: Frequency Division Multiple Access)や、同じ周波数 を用いるが、通信時間を分割することにより電文の衝突を防ぐ時間分割多元接続(TDMA: Time Division Multiple Access)などがある。前章では、MFSK を使用する場合、多値化数は 128 であることを示した。この場合、1 つの端末の占有帯域幅は 4.8kHz × 128=614.4kHz で ある。ここではこの帯域をグループ帯域幅と呼ぶ。315MHz 帯のテレメータの特定小電力 ⁶⁾の規格で定められた周波数帯は、空中線電力を 250µW 以下とすると、312MHz を超え、 315.05MHz であり、帯域幅は 3.05MHz となる。これを 614.4kHz で割ると、4.96 となり、4 個の重なりの無いグループ帯域幅が確保できることがわかる。従って、FDMA により 1つ のグループ帯域幅における端末数を 250 に低減できる。多元接続法には、上記の他、符号 分割多元接続(CDMA: Code Division Multiple Access)などがある。CDMA は異なる拡散符号 をキーとして用いることにより多元接続を可能とするが、本研究ではこの拡散符号を変調 に利用するため、これを行わず、TDMA により多元接続を行う。信頼性を確保するには、 それぞれの端末にタイムスロットを割り当てるが、その場合には時間管理、つまり端末に 受信機能を持たせる必要があり、消費電力が増加する。本研究で開発する通信プロトコル は 1%の信頼性を犠牲にすることができる。ここでは送信間隔を乱数により決定する手法 を採用し、理論的に 1%以下の衝突確率となる送信間隔を決定する。

図②-(6)-2-6.1a は、電文衝突確率を検討するモデル図である。最初に端末は 0 から T_{int0}の範囲内でランダムに選択された時間 St_n後に送信動作を行う。その後、T_{int0}の間欠時間後、 0 から T_{int1}の範囲内でランダムに選択された時間 Tr_n後に端末は送信動作を行う。この Tr_n は毎回の送信時にランダムに選択される。T_{int1}は、各端末が最初に選択する St_nが同じだっ た場合、その後同じタイミングで送信し続けることを避けるために設定したものであり、 T_{int1} << T_{int0}とする。送信時間については、短電文化が可能な本通信プロトコルを使用す る場合には1つの端末がグループ帯域を専有する時間を短くすることができるため、衝突 確率を低減することができる。端末の送信内容は、1 グループ帯域を 250 の端末が使用す るため、ID は 8 ビット(=256)とする。センサデータを 20 ビット確保する場合、総送信ビ ット数は 28 ビットとなり、シンボル数は 4 となる。送信速度は 4.8ksymbol/s であるため、 一回の通信時間 T_{trans}は、833µs となる。端末数 N を 1000、100 とし、それらの場合におけ る電文の衝突確率を計算する。

図②-(6)-2-6.1b は、計算のためのイメージ図である。横軸は時間であり、図の緑色の線 は各端末の送信を示している。図②-(6)-2-6.1b(1)は間欠時間 T_{int0} 中に各端末がランダムで 送信していることを示している。この状況において、ある端末の電文が他の端末の電文に

図②-(6)-2-6.1 電文衝突確率を検討するモデル図

図②-(6)-2-6.2 間欠時間 Tint と衝突確率の関係。黒丸、赤丸はシミュレーション結果

衝突する確率とは、この T_{int0}内で、送信開始時間を緑色の線に重なるように選択してしまう確率である。従って、その確率は、下式となる。

 $p(\%) = 100 \times N \times T_{trans} / T_{int0}$

(11)

上式は、わかりやすくすれば図②-(6)-2-6.1b(2)のように、各端末の通信時間をまとめた 場合に緑色の時間帯を通信開始時間として選択する場合の確率を計算する式である。(6) 式に対して N=1000, 100 のグラフを描くと図になる。図②-(6)-2-6.2 には、コンピューター を用いて図②-(6)-2-6.1a のモデルをシミュレーションした結果も示した。図より、1000 端 末を同時接続させる場合には、間欠時間間隔を約 20 秒以上に、100 端末の場合は約 2 秒以 上にすることにより、電文衝突確率を 1%以下にすることができることが分かる。

②-(6)-2-7 900MHz 帯に関して

これまでの設計は 315MHz 帯の特定小電力無線局に対応させるよう設計した。920MHz 帯の特定小電力無線局は、占有帯域幅は 1MHz まで可能であり、同様の設計が可能である が、注意すべきことは水晶振動子の偏差が 315MHz に対して 3 倍程度になる点である。水 晶振動子の偏差が±5.9ppm の場合、周波数のずれは±5.43kHz となる。この場合だと多値 化数は 64 となる。

②-(6)-3 試作

(2)-(6)-3-1 送信機

本通信システムでは、多値 FSK を実現する無線送信器を必要とする。市販 IC はそのほ

とんどが 2-FSK や OOK(on/off keying)であり、あっても 4-FSK である。そのため、本研究 では 128-FSK を実現する IC を開発した。表②-(6)-3-1 は開発した IC の仕様である。

電源 (VDD)	1.55V
スタンバイ時消費電流	1µA (VDD=1.55V)
サイズ	2.54 mm $\times 2.54$ mm
作製プロセス	0.18µmCMOS
RF	
周波数	310MHz-320MHz
出力	0dBm
送信速度	$305 \mathrm{cps} \sim 12.5 \mathrm{kcps}$
最大チップ数	16
最大シンボル数	6
変調	最大 128-FSK
アナログインターフェース	8bit ADC, コンパレータ
デジタルインターフェース	I2C

表②-(6)-3-1.1 開発した IC の仕様

図2-(6)-3-1.1 開発した IC の CAD、光学写真、カスタム IC を実装した送信機

図②-(6)-3-1.2 送信信号の時系列スペクトラム図 (拡散無、6シンボル送信)

図2-(6)-3-1.3 端末の消費電力(18 ビット送信)

図②-(6)-3-1.1 は開発した IC の CAD イメージ、光学写真、カスタム IC を実装した送信 機を示している。図②-(6)-3-1.2 は開発した送信機から送信された信号をリアルタイムスペ クトラムアナライザ(Tektronix WCA230A)で測定したものである。横軸が周波数、縦軸が時 間であり、6 シンボルが送信されていることがわかる。アンテナ給電点に小型同軸スイッ チ(ヒロセ電機製 MS166)を実装しており、このスイッチ部での電力は-15dBm であり、ア ンテナからの出力は-34dBm であった。開発した IC は 0dBm 程度の出力が可能であるが、 SAW フィルタ(EPCOS 製 B39311B3768Z810)のマッチング回路の調整が上手くいかず、上 記のような出力になっている。また、MFSK に関しては、微弱無線規格においては 128-FSK が可能であるが、特定小電力無線規格に準ずるために 1MHz の帯域幅とした場合には PLL とフィルタの関係で最大 8 つの周波数しか出力できなかった。そのため、実証試験では 8-FSK で変調を行うこととした。また、本来であれば通信速度から FFT のポイント数と、 AD 変換のサンプリング周波数を定めるが、開発の都合により逆となってしまい、試作シ ステムでの通信速度は 7143symbol/s とした。 図②-(6)-3-1.3 は、開発した送信機を用いて ID と測定データを合わせた 18bit に対し、拡散無、8-FSK、7143symbol/s で 6 シンボルの送 信を行った際の送信電流を示している。これを積分すると 10µWs の電力で送信しているこ とになる。

(2-(6)-3-2 受信機の試作と評価

図②-(6)-3-2.1 は受信機のブロック図を示している。受信機は、RF 信号を受信周波数ま で低減し AD 変換までを行うアナログフロントエンド部と、デジタル信号を処理して復調 を行うデジタル信号処理部がある。アナログフロントエンドはダイレクトコンバージョン 方式であり、必要帯域幅分の信号を AD 変換し、デジタル化された IQ 信号をデジタル処理 基板に入力する。入力されたデジタル信号は FPGA 内の FFT モジュールにより時系列周波 数スペクトラムに変換され、メモリ内に保存される。FPGA は保存された時系列周波数ス ペクトラムをリアルタイム解析し、電文と思われる情報を検出次第、逐次 MCU(Micro Control Unit)に暫定電文情報を渡す。MCU は電文情報検出の内、リアルタイム解析の必要 のない残りの解析を行い、電文を確定し、復調を行う。

図2-(6)-3-2.1 受信機のブロック図

a. デジタル処理基板

FPGA には ALTERA 社の Cyclone V を用いている。試作機であるため、Logic Elements(LE) にはシリーズ最大の 301K の LE を持つものとした。FFT ポイント数は 2048、8096 ポイン トのどちらかをファームの入れ替えにより実現できる。本デジタル処理基板では 1 チップ あたり最大 14 の FFT フレームを設定可能であり、4 チップ/シンボルで、最大 6 シンボル の受信が可能である。

図2-(6)-3-2.2 デジタル処理基板

図2-(6)-3-2.3 機能検証用アナログフロントエンド基板

目標とする 300MHz 帯と 900MHz 帯の同時受信、及び-130dBm の信号を受信することを 目的とし、ディスクリート部品を用いたアナログフロントエンドモジュールを試作した。 このモジュールは 2 枚の基板から構成されており、図②-(6)-3-2.3a の基板(基板 1)は図② -(6)-3-2.1 の LNA から LPF まで、図②-(6)-3-2.3b の基板(基板 2)は電源、LO、AD 変換の 機能をもっている。LNA の前に 300MHz 帯用と 900MHz 帯用のフィルタを実装しており、 ディップスイッチによりそれらの選択が可能になっている。LO には周波数シンセサイザ を用いており、これらにより上記両周波数帯域の受信が可能である。AD 変換のサンプリ ング周波数は 25.6MHz の水晶振動子により供給される。300MHz 帯におけるトータルゲイ ンは 41.5dB、NF(Noise Figure)は 3.1dB であった。

ア. 315MHz 帯と 920MHz 帯同時受信機の試作と評価

図②-(6)-3-2.4 300MHz帯と 900MHz帯同時受信機

この基板1を2枚用い、フィルタとLOの設定を変えることで300MHz帯と、900MHz 帯の同時受信が可能な受信機が実現できる。基板1には電源とAD変換がないため、2チ ャンネルをもつAD変換基板(Analog Devices社 AD9253評価ボード)と、電源及びそのAD 変換基板とデジタル処理基板を接続する基板を作製し、受信機を構成した。図②-(6)-3-2.4 はその写真である。この受信機をRF信号発生器(ROHDE&SCHWARZ SMU200A)に接続し、 315MHz帯と920MHz帯の信号を受信できることを確認した。

イ.-130dBm の信号を受信可能な受信機の試作と評価

-130dBmの信号を受信するためには、SNRのノイズNを低減する、つまり受信機の最終 段のフィルタの帯域幅を狭くする必要がある。これは送信側からすれば、送信速度を低減 することになる。これにより、受信感度が増加し、長距離通信が可能になるが、一方で通 信時間が長くなるために送信時の電力が増加する。しかしながら、本受信プロトコルでは 短電文化を行っており、まさにこのような目的において低消費電力化に対して効果的とな る。

本受信機の最終段のフィルタ帯域幅は FFT の RBW で決まっている。本受信機では、通 信速度を 7142symbol/s、FFT の RBW を 12.5kHz としたとき、-103dBm の受信電力の場合 にパケット誤り率が 1%以下となることを確認している。RBW を 1/10にすると SNR は 10dB 増加する。そのため、-130dBm の信号を 1%以下のパケット誤り率で受信するためには、 SNR を 27dB 増加する必要がある。そのためには RBW を 24.94Hz(=12.5kHz/501.2)にするこ とにより実現が可能となる。RBW は fs を AD 変換のサンプリング周波数、N_{FFT} を FFT の ポイント数とすると、 f_s/N_{FFT} である。すなわち、 f_s の低減、N_{FFT}の増加、或いはその両方 を行うことにより、RBW の低減を行う。本研究で試作したデジタル処理基板では 8192 ポ イントのFFT が可能である。この場合、204.31kHz の AD 変換のサンプリングにより 24.94Hz の RBW が実現できる。但し、この場合には 102kHz の帯域しか使用できない。②-(6)-2-5 で示したように、現状では安価で低消費電力なクロック源の偏差は±5.9ppm であり、 315MHz では±1.86kHz の誤差となる。従って、128-FSK を行うためには 476.16kHz の帯域 幅が必要となる。その場合には 476.16kHz/204.31kHz=2.3、つまり 3 個の FPGA を並列に動 作させる構成により実現が可能となる。

c. アナログフロントエンド基板(実証試験用)

上記の機能検証用アナログフロントエンド基板を用いた受信機は、サイズが大きいため に実証現場に持ち込むことが難しい。そこで機能検証用のモジュールを1チップにしたア ナログデバイセズ製 AD9361 を使用した基板を試作した。図②-(6)-3-2.5 はその写真である。 AD9361 の LO は共通であるが、2 系統の受信信号の入力が可能である。この場合には 315MHz 帯と、920MHz 帯の同時受信はできない。しかしながら、送信端末は 315MHz 帯 のみの送信であるため、この受信機では上記の 2 系統を空間ダイバシティか、或いは AD9361 の前段に LNA を設け、ゲインを変えて受信機トータルのダイナミックレンジを拡 大する用途として用いる。この基板のトータルゲインは 0dB から 77dB まで可変でき、NF はカタログ値¹⁴⁾ で 2dB である。

図2-(6)-3-2.5 機能検証用アナログフロントエンド基板

②-(6)-4 実証試験

本通信システムは、電流・磁界センサによる工場内のモニタリング、塵埃量センサによるクリーンルーム内のモニタリング、及び VOC センサによる工場内のモニタリングにて 使用された。

②-(6)-5 まとめ

本研究では、50m 程度の単方向通信、1000 端末の同時接続に対してパケット衝突確率を 1%以下とする場合の低消費電力無線通信のプロトコルを設計し、それを実現可能な受信機 を開発した。変調方法は、8 値以上の多値化であれば、直交信号を使用した多値 FSK が最 適であることを明らかにした。その際に課題となる多元接続については、プリアンブル、 ユニークワードや CRC を不要とした短電文化により 1000 端末の多元接続については約 20s 以上の送信間隔であれば 1%以下の電文衝突確率となることを明らかにした。この通信 プロトコルによれば、例えば、プリアンブル: 32bit、ユニークワード: 16bit、ID: 10bit, 測 定データ: 20bit, CRC: 8bit、計 86 シンボルを送信する 2FSK と比較し、同じ受信部での SNR を確保しつつ、1/10 の送信時間で情報を送ることが可能であることを示した。

試作した受信機により、315MHz帯と920MHz帯の同時受信が可能であることを示し、 -130dBmの信号の受信については、試作した受信機をもとに-130dBmの信号が受信できる 受信機の仕様を明らかにした。試作した送受信機は電流・磁界、塵埃量、VOCセンサの省 エネ実証に用いられ、試作した送信機では18bitの送信を10μWsで行えることを実証した。

本通信手法は②-(6)-2-4 で示したように、周波数帯域を有効に利用することで送信時間を 低減して端末の低消費電力化を行う手法である。通常は、長距離通信を行うためには受信 感度を増加するために周波数帯域幅を狭くする必要があるが、本通信手法は帯域を広く用 いることで端末の送信電力を低減する。そのため、グリーンセンサネットに限らず、単方 向通信で遠距離、多端末の通信を行うアプリケーションに有効な技術といえる。

②-(6)-6 参考文献

1) Shannon C. E., "Communication in the presence of Noise", Proc. IRE, Vol. 37, 1, pp.10-21 (1948)

2) Lin LB, Lin XJ, and Shroff NB : "Low-Complexity and Distributed Energy Minimization in Multihop Wireless Networks", IEEE-ACM Transactions on Networking, Vol. 18, 2, pp. 501-514 (2010)

3) 吉川嘉茂、渡邊崇士、滝田敏夫、一倉孝宏、渡邊学、生田功:グローバル対応 超低消費電力 小電力無線 LSI とその応用、Panasonic Technical Journal, Vol. 56, 1, pp. 10-15 (2010)
4) 松井壮介、石田繁己、鈴木誠、猿渡俊介、森川博之:実験的アプローチによるシングルホップ通信とマルチホップ通信の消費電力比較、2007 年度電子情報通信学会総合大会論文集、p. 413 (2007)

5) 藤本淳、秦智之、伊藤寿浩: 無線ユビキタスセンサを用いた電力モニタリング 第一報: 社会実証実験とセンサの普及課題、J. Japan Society of Enegrgy and Resources, Vol. 32, 3, pp. 9-15 (2011)

6) 特定小電力無線局 315MHz 帯テレメータ用、テレコントロール用及びデータ伝送用無線 設備 標準規格 (ARIB STD-T93)、電波産業会

7) Hyoung-Seok Oh, Taeksang Song, Euisik Yoon, Choong-Ki Kim: "A Power-Efficient Injection-Locked Class-E Power Amplifier for Wireless Sensor Network", IEEE Microwave and Wireless Components Letters, Vol. 16, 4, pp. 173-175 (2006)

8) Silicon Laboratories Si4464/63/61/60 Datasheet, p. 20

9)サーキットデザイン社製 315MHz 帯送信機 RTM-1 仕様、

http://www.circuitdesign.jp/jp/products/products1/rtm1/index2.asp

10) Bernard Sklar: Digital Communications fundamentals and Applications, Pearson Prentice Hall,p. 108, p. 195(2011)

11) William C. Lindsey, Marvin K. Simon: Telecommunication systems engineering, Dover, p. 231,p. 489

12) 石井聡: 無線通信とディジタル変復調技術, CQ 出版社, pp. 252-255

13) 武井利行:スペクトラム拡散方式の原理と応用、電波による無線データ伝送技術、CQ 出版, p. 40

14) Analog Devices AD9361 Datasheet, p. 3

②-(7) グリーンコンセントレータの開発【(株)NTT データ】

(2-(7)-1 研究開発の背景と目標

<研究開発の背景>

グリーンセンサ端末及びグリーンセンサネットワークシステム普及のためには、グリー ンセンサ端末からセンサデータを受信し、クラウドサーバへ送信するためのゲートウェイ 装置(コンセントレータ)が必要である。また、このコンセントレータには、設置及び、 セットアップ作業の手間、サーバとの通信回線利用料の増大、センサネットワークシステ ムを円滑に管理・コントロールするような機能も求められる。

本研究開発では、これら課題を解決するために、小型コンセントレータ(グリーンコン セントレータ、以下 GCON と略す)のハードウェア開発及び、センサネットワークシステ ムを効率的に運用するためのソフトウェア開発を行う。

<研究開発の目標>

・大量のセンサノードを集約できるデバイスゲートウェイ機能、セットアップ作業・メン テナンスの負荷やデータ転送における負荷軽減、通信コスト低減を実現とするための、小 型組み込み端末(コンセントレータ)の検討と開発する。

・開発したグリーンセンサ端末とコンセントレータを用いて、スマートコンビニ、スマー トオフィス、スマートファクトリでの機能実証を行い、グリーンセンサネットワークシス テムとしての実用性を検証する。

・3G/LTE からコンセントレータを経由して、アクチュエータをクラウド上から遠隔でリアルタイムに制御するための技術開発

・通信障害や障害物の影響を受けないメッシュネットワークを構成でき、WAN 接続の通 信コスト低減を目的とした、コンセントレータ間転送方式(WiFi マルチホップネットワ ーク)を開発する。また、通信速度 1Mbps 以上、ホップ数 3 ホップ以上、PAN 通信遅延 100ms 以下、パケットロス率 20%以下を目標とする。

②-(7)-2 グリーンコンセントレータの開発

②-(7)-2-1 開発の目的

グリーンセンサからの測定データを受信し効率よくクラウドへ送信するための機器を 開発。

主な目的は以下の通り。

- ▶ グリーンセンサ受信機からのセンサデータを取りこぼすことなく格納する
- ▶ 設置コストを下げ、可能な限り特別な工事を必要としない作りとする

▶ 通信コストを削減する

②-(7)-2-2 GCONの仕様

グリーンコンセントレータのハードウェア仕様を「表②-(7)-2-2.1」に示す。

CPU		ARMv7 Cortex-A5 550MHz/Dual QDSP6
メモリ	ROM	NAND Flash 256MB
	RAM	SDRAM 128MB
Network	3G	LTE/HSPA/HSDPA/HSUPA
	Wi-Fi	IEEE802.11b/g/n (AP mode/Client mode)
	GPS	gpsOne Gen 8A with GNSS Standalone, Assisted, gpsOneXTRA, 2dB improvement vs. Gen7
Interface	外部	USB(Host)/SD card/SIM/RS232C(デバッグ用)
	内部	UART(GND/TxD/RxD) :3.3v 供給 ※4wire6pin ソケット
LED		POWER/WAN/PAN
アンテナ		外部アンテナ x 2
サイズ		111mm x 73mm x 27.2mm
重量		約 126g
認証		JATE、 TELEC
3G/LTE 対応キャリア		NTT docomo (IoT 実施済み)

表①-(7)-2-2.1 GCON ハードウェア仕様

グリーンコンセントレータのアプリケーション仕様を「表②-(7)-2-2.2」に示す。

データ収集機能	UART または Wi-Fi 経由による GSN 通信仕様に準拠したセンサ データの取込、検査
ダイアル機能	3G/LTE 網へのダイアル接続(常時接続、接続間隔指定)
データ蓄積機能	取り込んだセンサデータをメモリへ一定量蓄積
データ圧縮機能	クラウドへの送信時、蓄積データの圧縮
データ送信機能	蓄積データをクラウドへ送信(送信間隔指定可)
データ再送信機能	通信環境の影響により送信失敗時、通信環境回復後蓄積デー タを再送信
ログ出力機能	センサデータの取込、検査、クラウド送信等の動作に関する ログを出力

表②-(7)-2-2.2 GCON アプリケーション仕様

②-(7)-2-3 グリーンセンサデータ通信仕様の策定

グリーンセンサネットワーク(以下、GSN と略す)プロジェクトでは、センサ端末と GCONの間でセンサデータをやり取りするために必要なデータフォーマットが存在しなか った。そのため本プロジェクトで共通的に使用できるデータ仕様を策定した。

グリーンセンサデータ通信仕様(以下、GS データ仕様)はセンサ受信機(レシーバ) からグリーンコンセントレータへのデータ仕様である「レシーバ-GCON間GSデータ仕様」 とグリーンコンセントレータからクラウドへ送信するためのデータ仕様「GCON-クラウド 間GS データ仕様」に分かれる。その適用箇所を「図②-(7)-2-3.1」に示す。

図②-(7)-2-3.1 GS 通信仕様概略図

「レシーバ-GCON間GSデータ仕様」の概要を「図②-(7)-2-3.2」に示す

図②-(7)-2-3.2 レシーバ GCON 間 GS データ仕様

電文はデータの開始を表す「STX」、GS 端末の情報やセンサデータなどが格納される 「データ部」、通信時のデータエラーを検知するための「CRC」で構成される。また、 「データ部」については、「ヘッダ情報」、「GS 端末情報」、「任意情報(センサ情報 等)」で構成される。(以下、このデータ形式で作成されたデータを GS 端末データと呼 ぶ)

表②-(7)-2-3.1 GS 端末データ概要

ヘッダ情報	この電文の全体サイズと、GS端末情報として何が含まれているかを指 定する領域。主にフラグ情報のビットが情報の有無を表す。
GS 端末情報	GS端末が取得可能な情報を格納する領域。取得可能か否かはヘッダ情報のフラグ情報のビットにより指定し、その領域に値を格納する。
任意情報 (センサ情 報等)	ユーザが自由に電文仕様を指定できる領域。主に機器毎に測定値や範囲の異なるセンサデータ等が格納される。 GS端末情報には「フォーマット指定」という領域が設けられており、 ここにフォーマット番号を指定することにより任意電文がどのセンサ フォーマットで作成されたかを判別することが可能である。

次に、GCON-クラウド間 GS データ仕様を「図②-(7)-2-3.3」に示す。

図②-(7)-2-3.3 GCON クラウド間 GS データ仕様

電文は GCON の情報を格納する「GCON ヘッダ情報」と、蓄積したセンサデータを複数 圧縮して1ファイルにした「圧縮データ」で構成される。(以下、このデータ形式で作成 されたデータを GCON データと呼ぶ)

- ✓ GCON ヘッダ情報
 電文のサイズと、GCON 装置の ID、圧縮データに含まれる GS 端末データの件数、
 GCON がクラウドに送信した日時などが含まれる。
- ✓ 圧縮データ
 GCON に蓄積された GS 端末データを圧縮して 1 つのファイルにしたデータ。gzip
 形式で圧縮されている。

②-(7)-2-4 GCON アプリケーション

コンセントレータのような機器において基本的にアプリケーションは実装されていな い。そのため、今回のようなセンサネットワークシステムを導入する際、センサデータを 収集しクラウドと接続するための機構が必要となる。

そこで、ある程度汎用的にデータフォーマットを解釈し、センサデータを収集、蓄積、 送信する基本アプリケーションを開発し GCON に実装した。GCON アプリケーションの主 な動作について、「図②-(7)-2-4.1」に示す。

図2-(7)-2-4.1 GCON アプリケーション概略図

②-(7)-3 機器を自動制御するアクチュエート技術の開発

センサデータによる新たな価値を生み出すためには、収集データの分析だけではなく、 分析結果に応じた対応アクションを実施することが重要である。そこで本プロジェクトで は、コンセントレータに接続された多様な機器をクラウド側から自動制御するためのアク チュエート技術として、発信アプリケーション基盤を開発した。開発技術については、オ フィスの省エネ実証の中で、センサデータの分析結果をもとに、空調機や照明を自動制御 することで、その有用性を実証した。

②-(7)-3-1 発信アプリケーション基盤の概要

②-(7)-3-1-1 システム概要

ユーザアプリケーションが生成した発信内容を、クラウド上のサーバ環境からコンセン トレータ経由でコンセントレータ配下の発信先デバイスに発信するシステムである(図 ②-(7)-3-1-1)。ユーザアプリケーションが、API(Application Programming Interface)経由 もしくはデータベースへの直接アクセスにより発信依頼を行うと、発信アプリケーション 基盤が発信依頼に基づき、自動的に発信先デバイスへの発信処理を行う。そして発信処理 の実行結果をデータベースに格納する。

図②-(7)-3-1-1.1 発信アプリケーション基盤の概要

②-(7)-3-1-2 **実現要件**

発信アプリケーション基盤の開発にあたり、実現事項と、実現するための設計方針を下記の「図②-(7)-3-1-2.1」に示す。

図2-(7)-3-1-2.1 実現事項と設計方針

②-(7)-3-2 発信アプリケーション基盤の仕様

②-(7)-3-2-1 システム構成

発信アプリケーション基盤のシステム構成を下記に示す(図②-(7)-3-2-1.1)。発信先デバイ
スを接続するコンセントレータに加えて、コンセントレータと対になる発信アプリケーション群によって構成されている(表②-(7)-3-2-1.1)。

図②-(7)-3-2-1.1 発信アプリケーション基盤のシステム構成図

表2-(7)	-3-2-1.1	発信ア	プリ	ケーシ	Έν	⁄ 基盤の構成モ	ジュー	ール
--------	----------	-----	----	-----	----	----------	-----	----

項番	構成要素名	機能概要
1	コンセントレ	3G回線に接続したタイミングで発信制御APは制御実行依頼を送信する。
	ータ	発信機能 AP から届いた制御命令を発信先デバイスへ転送する。
2	発信制御 AP	コンセントレータから受信した制御実行依頼に基づき、コンセントレータに接
		続された発信先デバイスに対する発信データをデータベースより取得する。そ
		の後、発信実行 AP に発信実行の命令を行う。
3	発信実行 AP	発信制御 AP から引き渡された発信データに基づき、発信処理を実行する。実行
		結果と応答データを発信基盤データベースに格納する。
4	発信基盤 DB	発信依頼データを格納するデータベース。また、コンセントレータと発信先デ
		バイスとの接続関係についての情報を管理する。
5	発信依頼 API	ユーザアプリケーションからの発信依頼を DB に格納するための API

②-(7)-3-2-2 **動作仕様**

発信アプリケーション基盤は下記の動作を行う。

- ✓ 発信依頼テーブルに、発信依頼情報(宛先や発信内容等)を登録すると、実行タイ ミング毎に、発信アプリケーションが依頼情報を参照して発信処理を行う。
- ✓ 実行タイミングはコンセントレータから発信制御 AP への発信処理の実行依頼である。本実証では 30 秒間隔で、コンセントレータから実行依頼を送信する。
- ✓ 発信処理では、発信プラットフォーム側で、発信先デバイスへの宛先を解決して、 デバイスへ発信する。発信結果は発信依頼テーブルに登録される。(尚、コンセン トレータと発信先デバイスの接続構成情報を事前に登録しておき、マッピング情報 に基づきコンセントレータが通信内容を転送する。)

図2-(7)-3-2-2.1 発信アプリケーション基盤の動作

(2)-(7)-3-2-3 発信依頼の制御命令粒度

ユーザアプリケーションから発信アプリケーション基盤への発信依頼パラメータは、宛 先、発信方法、発信データである。宛先には事前に登録された発信先デバイスを示す ID を指定し、発信方法は HTTP や Socket などの通信プロトコルを指定する。また発信データ は発信先デバイスに送信したいデータ列そのものを指定する。宛先に対して、発信データ を発信方法で指定したプロトコルによって送信する方式である。

クラウドからの制御では、クラウド~ゲートウェイ間の命令を抽象化して、ゲートウェ イ上で各デバイス独自の通信プロトコルに変換する方式もある。この方式は、クラウド側 のアプリケーションからは、温度を上げるといった抽象的な命令で、様々なデバイスを制 御できる反面、各種デバイスが対応するためには、デバイス毎にゲートウェイデバイス上 で独自通信方式を実装する必要がある。

本実証ではアプリケーション毎に追加実装せずにプラットフォームとして利用出来る よう、発信データを指定した発信方式で送信する本方式を採用した。現状では、クラウド からゲートウェイ、デバイスへの通信時には IP 通信を使用する事例が多いことから、指定 できる通信手段として IP 通信上の Socket、HTTP を実装済みである。

②-(7)-3-3 発信アプリケーション基盤の実証評価

②-(7)-3-3-1 **実証概要**

スマートオフィスにおけるオフィスの省エネ実証にて、発信アプリケーション基盤を用 いた空調機の自動制御を実施した(図②-(7)-3-3-1.1)。本実証の内容は、各種センサを用 いたエネルギームダの発見と、空調設備制御をはじめとする対策アクションを通したムダ の削減である。発信アプリケーション基盤ではユーザアプリケーションと連携して空調機 の自動制御を実施している。具体的には、空調機を制御する空調コントローラをコンセン トレータに接続し、空調コントローラに対して、現在の設定値情報を取得する命令と、設 定値を設定する命令の発信を行った。

図②-(7)-3-3-1.1 スマートオフィスにおける空調機の自動制御実証の概要

②-(7)-3-3-2 **実証環境**

実証環境とパラメータは下記の「図②-(7)-3-3-2.1、表②-(7)-3-3-2.1」の通りである。

図2-(7)-3-3-2.1 実証環境

- 𝔄 𝔄 𝔄 𝔄 𝔄 𝔄 𝔄 𝔄 𝔄 𝔄 𝔄 𝔄 𝔄	②-(7)-3-3-2.1 実証環	境パラメ	ータ
-----------------------------	-------------------	------	----

項番	項目	パラメータ
1	設置対象ビル	1ヶ所(大阪オフィス)
2	コンセントレータ数(ビル毎)	1台
3	空調コントローラ数	1台
4	制御依頼件数	0~13 件/分/1 コントローラあたり
5	制御データサイズ	下記2パターンのデータ送受信を行う。
		164byte(送信 128byte、受信 36byte)
		96byte(送信 32byte、受信 64byte)

②-(7)-3-3-3 クラウド~空調コントローラ間のメッセージ

空調コントローラへの制御命令は、「省エネビル推進標準化コンソーシアム(以下、SBC)」 にて、標準化された HTTP 通信(SBC 通信モデル)によって行う(図②-(7)-3-3-3.1)。SBC 通信モデルでは、メッセージ部をバイナリ形式で送るバイナリ形式と、XML で送る XML 形式が規定されている。本実証ではバイナリ形式で通信している。

図2-(7)-3-3-3.1 SBC 通信メッセージ仕様

②-(7)-3-3-4 **実証評価結果**

実証環境下において、下記項目の評価を実施した(表②-(7)-3-3-4.1)。

表②-(7)-3-3-4.1 スマートオフィス実証における評価項目						
 内容	内容					
応答レスポンスの確認	発信依頼を行った送信データに対する応					

項番	内容	内容
1	応答レスポンスの確認	発信依頼を行った送信データに対する応答デ
		ータが正しく受信できているか
2	発信依頼の成功率	発信依頼した処理が成功する割合
3	発信依頼の処理時間	発信依頼登録から発信依頼結果がデータベー
		スに登録されるまでの時間

① 空調コントローラからの応答内容の確認

発信依頼された送信データが空調コントローラに渡り、空調コントローラからの応答デ ータを正常に取得していることを確認した。なお、実証中に発信したデータは「表② -(7)-3-3-4.2」に示した、機器状態の取得と、機器への制御値の設定の2パターンである。

項目	送信データ	応答データ
機器状	32byte	64byte
態の取 得	2000000741101000000000000000000000000000	40000007511010000000005acbe5401000000 0000000000000000100000010000001000000
機器へ	128byte	72byte
		, , , ,
の制御	80000007611010004000000000000000000000000	240000007711010000000078acbe5401000000
の制御 値の設	80000007611010004000000000000000000000000	2400000077110100000000078acbe5401000000 000000000003c00000000000000000
の制御 値の設 定	80000007611010040000000000000000000000000	2400000077110100000000078acbe5401000000 000000000003c000000000000000000
の制御 値の設 定	80000007611010040000000000000000000000000	2400000077110100000000078acbe5401000000 000000000003c000000000000000000

表②-(7)-3-3-4.2 空調コントローラに対する制御命令データと応答データ

② 発信依頼の成功率

ユーザアプリケーションから発信アプリケーション基盤に対する発信依頼の成功率を 計測した。実証評価期間は3日間(2015/01/20~2015/01/22)である。

表②-(7)-3-3-4.3 に実証結果のサマリーを示す。3 日間実施した結果、リトライ未実施時の成功率は28048 件中27688 件(97.45%)、リトライ実施時の成功率は28048 件中28000 件(98.55%)である。リトライは発信が失敗した際に再度実行する機能である。

表②-(7)-3-3-4.3 発信アプリケーション基盤に対する発信依頼の成功率(サマリー)

		発信依頼の	成功件数	失敗件数		
	1日目	2 日 目	3日目	平均		
リトライ無し	98.63	98.30	95.41	97.45	27688	360
リトライ有り	99.08	99.01	97.56	98.55	28000	48

また、図②-(7)-3-3-4.1 に時間帯別の発信成功率を示す。グラフから分かるように、発信 制御の失敗については、各時間帯にばらつくのではなく、一時的に制御依頼が失敗する時 間帯が発生することでまとまって失敗している。発信アプリケーション基盤内のログ上に おける失敗の原因はモバイル通信網側デバイスとのコネクションエラーであることから、 モバイル通信キャリア側にて、一時的にネットワークの状態が悪くなったためだと考えら れる。リトライ機能により、ある程度ネットワーク状態悪化に対する対策が可能である。

図②-(7)-3-3-4.1 発信アプリケーション基盤に対する発信依頼の成功率(時間帯別)

③発信依頼登録から結果登録までの時間

ユーザアプリケーションが発信アプリケーション基盤に発信依頼を実施してから、実行 結果がデータベースに格納されるまでの処理時間を計測した。表②-(7)-3-3-4.4 に実証結果 を示す。実証時は、コンセントレータから発信制御 AP への発信実行依頼が 30 秒間隔であ るため、約 99%の発信依頼が概ね 30 秒以内に実行される。リトライが実行されると、さ らに 30 秒後に実行されるため1分ほど時間がかかる場合がある。処理時間が5分程度だっ たデータが存在するが、これはコンセントレータからの発信実行依頼が途絶えていたため であった。こちらについても②同様に一時的にモバイル通信網の状態が悪くなったためだ と考えられる。

処理時間	件数	割合(%)
0:00-0:30	25449	90. 733
0:30-1:00	2317	8. 264
1:00-1:30	205	0. 73
1:30-2:00	49	0. 174
2:00-2:30	15	0. 053
2:30-3:00	0	
3:00-3:30	0	
3:30-4:00	0	
4:00-4:30	0	
4:30-5:00	6	0. 021
5:00-5:30	0	
5:30-6:00	7	0. 025
平均 4.5 秒	28048	100

表②-(7)-3-3-4.4 発信依頼の実行処理時間

(コンセントレータからの実行依頼が 30 秒間隔の場合)

②-(7)-3-3-5 追加検証

実証において、利用するモバイル通信網によって発信依頼の成功率の差異があったため、 複数社のモバイル通信網において、発信処理の成功率の比較を実施した。「図②-(7)-3-3-5.1」 に各社 SIM 毎の通信成功率(下り方向)の調査結果を示す。B 社が 100%の成功率に対し て、C 社が 99.7%、A 社が 86.79%であった。また発信頻度(件数)が上がることで成功率 がさがるケースもあった。本実証では、移動体通信事業者(Mobile Network Operator, MNO) の SIM と仮想移動体通信事業者(Mobile Virtual Network Operator, MVMO)の低価格 SIM を利用しているが、MNO と MVNO の間で通信成功率の差が見られた。MNO と MVNO の 回線品質については、各企業の提供サービスによって差が発生するため、一概に善し悪し は言えないが、サービス毎に通信品質の差があることは念頭に置き、事前の品質検証を行 うことが望ましいだろう。

図2-(7)-3-3-5.1 モバイル回線毎の発信処理成功率

②-(7)-3-3-6 まとめ

本プロジェクトにて、コンセントレータに接続された多様な機器をクラウド側から自動 制御するためのアクチュエート技術として、発信アプリケーション基盤を開発した。そし てスマートオフィス実証実験を通して、発信アプリケーション基盤として、省エネシステ ムを実現するための基本機能が動作することが実証できた。

発信制御の成功率については、コンセントレータが接続するモバイル網回線によるとこ ろが大きいことが判明した。ただしモバイル回線品質については、一般的に無線回線の SLA は明確に定められていないため、実際に利用する場合には、事前の品質検証と、リト ライ処理や再送処理といった不安定な接続品質下でも、データ収集やデバイス制御を継続 するための仕組みが必要となる。

②-(7)-4 WiFiメッシュネットワーク・マルチホップ通信技術の開発

M2M/IoT を実現する技術として、メッシュネットワークは早くから着目されていた。事 実、920MHz のような特定小電力無線という分野では、このメッシュネットワークを採用 した製品(プロダクト)が多く製造・販売されている。メッシュネットワークを採用する 事によるメリットとしては、以下のようなものがある¹⁾。

- ✓ ネットワーク状況に応じて、自動的に通信経路を生成するので、柔軟なシステム が構成可能
- ✓ ローカル環境で複数の回線を集約する事により、WAN 回線数を削減し、通信コ ストを削減する事が可能

M2M/IoT においては、通信データ量が少ない事を前提として、これらの低速通信機構を 採用したメッシュ通信が主流となっているが、実際には、機器管理情報やソフトウェアの ダウンロード、映像・動画の送受信など、必ずしも少量データのみではない。

そこで、より高速な通信規格であり、既にインフラとしての整備が進んでいる、Wi-Fi (IEEE0802.11a/b/g/n)を使用したメッシュ通信技術(IEEE802.11s)に着目し、実用可能 性を検証すると同時に、実用化へ向けた試作・研究を実施し、その結果を報告する。

2-(7)-4-1 WiFi メッシュネットワークとは

IEEE にて規格化した IEEE802.11s を採用する。本規格は、2011 年 9 月に IEEE にて 802.11 として標準化された仕様であり、ネットワーク層(IP層)に影響しない形で、メッシュネ ットワーク及びマルチホップ通信を実現するための規格である²⁾⁻³⁾。

A) IEEE802.11s におけるロールモデル

◆ Mesh Point(MP): 無線 LAN メッシュ機能のみを実装し たもの。近くの MP 等とのリンクを確 立する。

◆ Mesh AP(MAP):

MP の機能に加えて、STA との通信を サポートするもの

- ◆ Mesh Portal (MPP) : Mesh Gate (MG) MP に外部ネットワークに接続するゲ
- ートウェイ機能を実装したもの。

◆ Station (STA): 無線 LAN メッシュ機能を有さない通 常の無線 LAN 端末

- B) 主な特徴
 - ✓ 32 台程度のノードで構成される、小~中規模の無線 LAN ネットワークを想定している。多数のノードが接続されるため端末数は数百台規模となる。
 - ✓ 複数の無線 LAN メッシュネットワークが相互に接続することで規模を拡大することも可能である。

②-(7)-4-2 作業手順

IEEE802.11sのOSS (Open Source Software) である open80211s を使用して、WiFi メッシ ュネットワークの性能測定を実施する。open80211s は、Linux カーネル 2.6.26 より、正式 にメインラインに搭載されており、Linux OS をインストールする事で、標準的に搭載されているソフトウェアである。

これらを利用して試作を進めていくに当たり、大きく2つの課題を想定しており、これ らを解決する事を、本研究での目的とする。

課題1

open80211sを利用したメッシュネットワークの性能レベルが想定される性能要件を満た す必要がある。運用段階までを想定した際に、以下の指標を設定する。

項目	目標値	説明
ホップ数	3ホップ以上	3 ホップ以上を実現する事で、マルチホップの優
		位性を確保
通信速度	1Mbps 以上	マルチホップ通信を実現している、低速無線規格
		との差別化
PAN 通信遅延	100mS以下	通信性能を確保

課題2

無線通信を利用する事による通信品質の問題を解消する必要がある。

無線通信である以上、パケットロスやデータ消失などが発生する事を前提に、如何にし て上位レイヤで、これらの課題を解消する事ができるかを検討し、その方式を検証する。

上記、2つの課題をうけ、以下の手順で本研究を実施。

- 1. PC 環境下での open80211s の性能測定
- 2. GCON での open80211s の性能評価
- 3. 運用課題の解決に伴うソフトウェア改修と検証

②-(7)-4-3 PC 環境下での IEEE802.11s の性能測定

open80211sの性能は、WiFi通信ドライバの影響を多分に受ける事がわかっている。その 為、市場での利用実績が多い、"ath9k(Qualcomm)"及び"RT2800(Ralink)"の2つのドラ イバを使用して、性能測定を実施する。

図②-(7)-4-3.1 測定時のシステム構成

PC6 台を一列に並べ、通信がホップする事による、「通信遅延」「通信ロス」「通信速 度」を測定する。測定器からの「nuttcp」「ping」にて、測定を実施

図②-(7)-4-3.3 通信帯域の測定

図2-(7)-4-3.4 パケットロス率の測定

■総論

ある程度のホップ数を経由しても、低速通信規格と比較して約 10 倍の通信速度は期待 できる。また、パケットロスや通信遅延、さらには無線通信という点を考慮すると、確実 な通信を実現するために、上記レイヤでの通信にて、再送や到達確認などの手段を講じる 必要がある事がわかる。

②-(7)-4-4 GCON での性能評価

Linux PC で計測した結果は、想定した指標を全て満たしていたが、ハードウェアスペックが異なる GCON でも、これらの指標を満たす事ができるかどうかを検証した結果を、以下に示す。

図2-(7)-4-4.3 パケットロス率の測定

■総論

総体的な傾向としては、LinuxPC での測定結果とは同一となっているが、性能としては 大幅な向上が見込めた。

通信遅延 :ほぼ横ばい

通信帯域 :約5倍(4ホップ後の平均通信速度:1Mbps→5Mps)

パケットロス率:10%以下

性能向上の要因としては、Linux カーネル・バージョンの向上に伴う通信ドライバの性

能向上が一因となってはいるが、GCON ハードウェアの性能を PC 並みに向上できた事は 一つの大きな要因となっている、と言える。

②-(7)-4-5 運用課題の解決に伴うソフトウェア改修

Wi-Fi メッシュの標準技術規格である IEEE802.11s では、ローカルネットワーク内での通信を前提としており、仕様そのものは、M2M や IoT で想定されるようなリモート通信環境 との相性は決して良くない。その為、これらを補完するような通信方式を採用する必要が ある。

図2-(7)-4-5.1 運用時に想定される課題

○課題1及び課題2

IEEE802.11s(及び TCP/IP)の上位スタックとして、非同期メッセージングプロトコル である AMQP(※)及び、そのプロトコルを実装した OSS である Qpid を採用する。これ により、伝送遅延や伝送損失があっても、リカバリが可能となる。

○課題3

ローカル・ノードとの直接通信が実現できるよう、トンネリング・プロトコルである L2TP/IPsec を採用する。これにより、リモート環境からでも各ノードへの直接アクセスが 可能となる。

さらに、Wi-Fi メッシュ通信では、ゲートウェイ(※)は任意に変更が可能であり、そ れによってメッシュ通信のメリットであるネットワークの自由度を、さらに向上する事が 可能となるため、ゲートウェイが持つネットワーク情報を、メッシュネットワーク内の全 ての端末で情報共有する必要がある。

1. VRRP(Virtual Router Redundancy Protocol)による MG の仮想化

ゲートウェイを仮想化する事によって、各ノードに対して、ゲートウェイの変更 を意識させないための機能 2. DHCP リース情報の共有

本来、サーバ(ゲートウェイ)のみが保有するリース情報を、全てのノードで事 前に共有しておくための機能

3. 無線電波強度情報の共有

ゲートウェイを決定するための無線のメトリクス情報を共有するための機能

 MG(ゲートウェイ機能)決定アルゴリズム

3G 及び Wi-Fi の電波状態を元に、ゲートウェイ機能を決定するためのアルゴリズ ムを検討し、採用

(※) ゲートウェイ機能とは

メッシュネットワーク内でのロールとしては MG (Mesh Gate) が該当する。WiFi メッ シュネットワークとリモートネットワークの中継を行う機能であり、GCON においては、 WiFi ネットワーク内の送受信データを、3G/LTE ネットワークを介してクラウド側ネット ワークと接続する機能を有したものである。

上記 1~3 は、これらを実現する OSS を採用する事で対応可能(ネットワーク構成、ソ フトウェア構成は後述)。これに対して、4 を適用するためにはアルゴリズムを検討する 必要があり、以降でこのアルゴリズムについての解説を行う。

IEEE802.11sの規格では、各ロール(MGやMPなど)を運用中に変更する事が可能な仕様となっている。これは、<u>その他のメッシュネットワーク規格や、製品化されたメッシュネットワーク仕様とは大きく異なる点である</u>。この仕様により、仮にゲートウェイ機能(MG)が何らかの理由で停止しても、その他のノードがMGとなり運用を継続できるようになる。(他の仕様では、ゲートウェイや親機が停止すると、運用が停止してしまうのが一般的である。)ただし、規格内ではMGを決定するためのアルゴリズムは、定義されていない為、最適なアルゴリズムを検討する必要がある。

始めに、MG として最適なノードについて定義する。

「3G/LTE 及び WiFi の無線電波状態が最も高いもの」が MG として最適なノードとなる。 その理由は非常に明快で、リモート環境(3G/LTE ネットワーク)へのアクセス及びロー カル環境(WiFi ネットワーク)へのアクセスが、共に最適なものを選択する事で、いずれ のネットワーク環境でも安定して稼働させるためである。この定義を元にして、以下のア ルゴリズムを採用する。 ▶ 3G 強度の重み、メトリクスの重み

3G/LTE ネットワーク環境及び WiFi ネットワーク環境の双方が最適な状態は、必ずしも 存在するとは限らない。そこで、センタ(クラウド)への接続可能性が最も高いものを優 先させるために、3G 強度の重みを1、メトリクスの重みを0.25 として算出している。

➤ 3G 強度値の算出方法

3G強度= $\frac{3G$ 強度}{3G強度の最大値

- ▶ メトリクス値の算出方法
- メトリクス値=

$$\frac{1}{
\frac{1}{2^{4^{\mu 0}}}} \times \sum_{n=1}^{\frac{2^{4^{\mu 0}}}{n}} \left(\frac{a^{2^{\mu 0}}}{a^{2^{\mu 0}}}\right)$$

上記をメッシュネットワーク内の各 GCON にて算出し、共有する事で、MG に最も適し た GCON を選定する事が可能となる。ここで問題となるのは、電波状態の揺らぎにより、 算出した優先度が頻繁に変更され、ゲートウェイ変更が頻繁に発生してしまう事である。 これを解消するために、一回の優先度算出による結果を即時に採用するのではなく、複数 回の平均値から優先度を決定する方式を採用した。

上記を踏まえた結果としてのネットワーク構成、ソフトウェア構成は、以下の通り。

図2-(7)-4-5.2 ソフトウェア改修後の構成

②-(7)-4-6 まとめ、今後の課題

WiFiメッシュネットワーク環境下での通信性能の大幅な向上を実現する事ができた。また、性能向上以上に、無線通信において不可避であるパケットロスなどの通信品質の問題 を解決するために、上位レイヤにて対策できた事は、運用面で大きな成果がでたと言える。

また、ソフトウェア改修により、運用面での多くの課題を解決する事ができ、運用へ向 けて前進する事ができたものと考える。

ただし、本改修のみでは対処できない問題が残されているのも確かである。メッシュネ ットワークは非常に柔軟性があり、様々なネットワークを構成する事が可能である一方で、 それ故にネットワーク構成によっては、運用に支障をきたす構成がある。一例として、一 つのメッシュネットワークとして運用している状態で、ネットワークが複数に分離されて しまう場合である。この時、分離元及び分離先では、お互いに利用している IP アドレスを 把握できない為、IP アドレスが重複してしまい、センタ側で識別ができなくなってしまう。 特に、デバイス・マネジメントなど、センタ側から GCON ヘアクセスする際に問題となる 事が想定される。対策としては、ユニークな GCON の ID と IP アドレスを対応付けた管理 情報を、センタ環境で保有するなどの手段が考えられるが、本研究においては対応できて いない。

②-(7)-5 グリーンコンセントレータ端末実証

GSN プロジェクトで開発した GCON と GS 端末を、スマートコンビニ、大規模商業施設、 ファクトリ、オフィスの4種類の実証現場に導入しセンサデータ収集を実施した。本端末 実証の目的は、GSN システムにおける GCON の有用性・稼働性の確認を行うものである。 また、GCON の稼働性に関しては、GCON が実証期間中に停止することなく稼働していた か、受信モジュールより収集したセンサデータを指定の間隔でクラウドに送信出来ている かをクラウド側の着信データを用いて分析する。端末実証の条件を以下に示す。

	x () ()	* III / I < / C HTT			
実証企業	受信ボード	センサ	GCON	送信	分析対象期間
(実証場所等)	接続方式	送信間	送信間隔	プロ	
		隔		トコ	
				ル	
セブン-イレブン・ジャパン	UART 経由	約1分	5分間隔	socket	$2014/4/1 \sim$
(首都圏の 30 店舗)					2014/10/31
T社	UART 経由	約1分	5分間隔	HTTP	$2014/4/1 \sim$
(商業施設)					2014/10/31
東京電力	Wi-Fi 経由	約1分	5分間隔	HTTP	$2015/1/24 \sim$
(工場)					2015/2/23
ダイキン工業	UART 経由	約1分	30 秒間隔	HTTP	$2014/8/19 \sim$
(オフィス)			→1 分間隔		2015/1/30

表②-(7)-5.1 端末実証の条件

- ✓ 受信モジュールよりセンサデータが届かない場合の送信中止についてもデータ欠損に 含む。
- ✓ 厳密な5分間隔ではない為、長期運用における間隔のずれによる要素を含む。
- ✓ 機器の故障、機器の移設期間、運用事故、アプリケーションのバグによる長期停止など、要因の判明している障害については割り出せる範囲でデータ欠損に含まない。

②-(7)-5-1 スマートコンビニ実証

実証企業:セブン-イレブン・ジャパンGCON 台数:最大 30 台

②-(7)-5-1-1 分析結果

送信成功率より通信環境は良いことが分かるが、データ欠損に対する再送成功率が低い ことが分かる。これは Socket プロトコルに到達保証がないためであるが、データ量は HTTP にプロトコルに比べ軽量であるため、ある程度の欠損は許容することで通信量を削減する というケースには有効であると考える。

集計月	送信成功率	タイムア	再送	データ	送信成功率
(月平均→)		ウト	成功件数	欠損件数	(再送込)
		発生件数			
4 月	97.90%	182	32	150	98.27%
5 月	98.18%	162	9	153	98.29%
6 月	98.61%	120	5	115	98.67%
7 月	98.82%	98	10	91	98.93%
8月	88.36%	1039	978	61	99.32%
9月	99.49%	44	6	33	99.56%
10 月	95.72%	21	5	16	99.77%
期間平均	96.72%	238	149	88	98.97%

表②-(7)-5-1-1.1 スマートコンビニ実証結果

②-(7)-5-2 スマート商業施設実証

実証企業:T社

GCON 台数:最大 6 台

②-(7)-5-2-1 分析結果

送信成功率から通信環境の悪さが伺えるが、HTTP プロトコル方式を採用したことにより TCP レベルで通信の再送が行われデータ欠損は殆ど発生しなかった。

集計月	送信成功率	タイムア	再送	データ	再送込送信成功率
(月平均)		ウト	成功件数	欠損件数	
		発生件数			
4月	91.53%	730	729	1	99.99%
5 月	91.60%	676	675	1	99.99%
6月	91.69%	715	715	0	100.00%
7 月	91.76%	732	732	0	100.00%
8月	91.66%	705	705	0	100.00%
9月	92.04%	684	684	0	100.00%
10 月	91.60%	746	746	0	100.00%
期間平均	91.70%	713	712	0	100.00%

表②-(7)-5-2-1.1 スマート商業施設実証結果

②-(7)-5-3 スマートファクトリ実証

実証企業:東京電力

GCON 台数:1台

②-(7)-5-3-1 分析結果

こちらもスマート商業施設と同様に HTTP プロトコル方式を採用しているが、成功率が 低い。これは前述と若干システム構成が異なり、センサと GCON の間にデータロガーであ る STiNC が混在していること、原因は不明だが 3G 通信の不安定さが原因と考えられる。

表②-(7)-5-3-1.1 スマートファクトリ実証結果

集計月	送信成功率	タイムア	再送	データ	再送込送信成功	
		ウト	成功件数	欠損件数	率	
		発生件数				
1-2月	59.72%	3652	1795	1857	79.52%	

※60 分以上の未受信間隔が 26 回発生しているがそれもデータ欠損に含む。

②-(7)-5-4 スマートオフィス実証

実証企業:ダイキン工業

GCON 台数:最大3台

【本分析における留意事項】

- ① 8月~11月の中旬まで:30秒に1回送信
- ② 11月の中旬~1月まで:1分に1回送信に切り替え
- の期間について、センサの周期が1分であることから、純粋に前半30秒と後半 30秒の何れかにクラウドに送信されるが、前半または後半に全センサが偏るケ ースも想定される。今回はこのケースはおきない前提で分析を行う。

②-(7)-5-4-1 分析結果

こちらもスマート商業施設、ファクトリと同様に HTTP 方式を採用。しかし、センサ端 末のデータ送信仕様及び、稼働時間に差異があるため1日の総着信予定数に対して稼働時 間における送信予定数で分析を実施。

集計月	稼働時間	着信数	受信成功率					
(月平均)	(分)	(月合計)						
8月	4901	7303	74.5052%					
9月	14677	22671	77.2331%					
10 月	16740	24772	73.9904%					
11 月	11357	14638	81.7408%					
12 月	14348	12887	89.8174%					
1月	14513	13177	90.7945%					
期間平均	12756	15908	81. 3469%					

表②-(7)-5-4-1.1 スマートオフィス実証結果

②-(7)-5-5 まとめ、今後の課題

本プロジェクトでは様々なケースの実証実験を行うことができ、GCONの運用性及びア プリケーションの評価・改善を行うことが出来た。また、全実証企業において省エネ目標 を達成することができたため、GSN システムにおける GCON の有効性、クラウドシステ ムの実用性を示すことが出来たと考える。

実証を通じて、わずかな環境差異や 3G 通信の状態によって予期せぬ問題が発生することも確認できた。これは今後のビジネス展開に向けた課題として対応方針・対策を整理しておきたい。

②-(7)-6 まとめ

コンセントレータを用いたスマートコンビニ、オフィス、商業施設、ファクトリの各 実証実験において省エネ目標の達成に貢献すると共に、GSN システムにおけるコンセン トレータの有用性を示すことが出来た。また、WiFi メッシュネットワーク・マルチホッ プ通信技術を開発し性能目標を超える数値(4 ホップ通信環境において、通信速度 5Mbps、 PAN 通信遅延 10ms 以下、パケットロス率 10%)を計測できたこと、3G/LTE 経由でのア クチュエータの自動制御技術を開発し実証環境における実用性の評価も行えた。

また、これら開発と実証を通じて幾つか課題も見えた。

- ✓ 微妙な環境差異による予期せぬ問題・不具合の発生
- ✓ 3G/LTE 通信の品質を考慮したシステム設計
- ✓ メッシュネットワーク分断時における外部からの管理方法

これら課題については今後のビジネス化に向けて検討し対応する予定である。

②-(7)-7 参考文献

- インプレス R&D インターネットメディア研究所: Wi-Fi ネットワーク技術動向 2012、 2012-02-20
- IEEE STANDARDS ASSOCIATION : Part11: Wireless LAN Medium Access Control(MAC) and Physical Layer(PHY) specifications Amendment 10:Mesh Networking: 2013-07-10
- Gee Keng Ee*, Chee Kyun Ng, Nor Kamariah Noordin and Borhanuddin Mohd. Ali : A Review of 6LoWPAN Routing Protocols, August 2010

③グリーンセンサネットワークシステムの構築と実証実験

③-(1) スマートコンビニのためのグリーンセンサネットワークシステムの開発【(株)セ ブン-イレブン・ジャパン、産業技術総合研究所】

③-(1)-1 研究開発の背景と目標

<研究開発の背景>

アンガス・マディソンが行った紀元1年から現在までの GDP および人口推計によれば、 紀元1世紀から1800年までかけて、GDPおよび人口は約6倍の増加にとどまっているの に対して、直近の 200 年では人口(約6倍)、GDP(50倍)ともに急増している。これら の急増は化石エネルギー燃料の活用によりもたらされた。耕作の機械化や化学肥料は土地 の生産性の飛躍的な向上に貢献し、輸送機関の進歩は大量の食物を需用者に届けることを 可能とした。「食料や生活に必要なモノを簡単に入手できる」、「快適な環境で一年中過ごせ る」、さらに「楽に遠距離を移動できる」といった、現在われわれが享受している豊かで、 快適で便利な生活は、すべてエネルギーに支えられている。これまで豊かな生活を享受で きていたのは世界人口約 72 億人の約 18%をしめる一部先進国に限られていたが、近年、 豊かな生活の追求は新興国へ急速に広がりつつある。また、世界人口は今後も増加を続け、 2040-2050 年頃には 90 億人を突破すると予想されている。エネルギー消費は毎年増加して おり、今後もその傾向は変わらない。現在人類が直面している最も深刻な問題の一つが「エ ネルギー問題」である。これは、増え続けるエネルギー需要を枯渇性やコスト等を考慮し て「どのように賄うのか」、またエネルギー消費に伴い排出されるゴミ(温室効果ガス、大 気汚染物質、核廃棄物)を環境への負荷を抑えて「どのように処理していくのか」、という 2 つの課題に集約できる。これらの課題間には、たとえば石炭火力など安価なエネルギー 使用は産業競争力を高めるが、環境負荷は増大するという「経済と環境のカップリング」 も存在する。新エネルギーに関連した技術開発は活発に行われているが、幾何級数的に増 加する人口や経済成長の圧力に抗するまでには至っていない。化石燃料(石炭、石油、ガ ス)、原子力、および自然エネルギー(風力、太陽光)を適切に使い続けることに今後100 年間は変わらない。技術の中で地味ではあるが、最も効果が期待されるのが「省エネ」で ある。年2%ずつエネルギーの効率化ができれば、今世紀半ばに世界人口が90億人を突破 しても、現在われわれが消費しているエネルギー量で、すべての人々が豊かな生活享受で きるという (ローゼンフェルトの法則)。

わが国では、省エネに関連した様々な取組みが、産官学で実施されてきた。それらは、 機器の効率を高める技術やエネルギー使用量を把握する技術や、特定の場所の省エネを実 現するための専門的な分析や対策である。しかしこれら取組により、「省エネ」に潜む複雑 性や困難性を明確にできたとは言えない。「省エネ」を社会に定着させるためには、複雑性 や困難性を明らかにできる従来とは異なった視点からの研究開発が必要であると考えた。 それが「比較可能性」である。たとえば、家庭の電力消費に係る要因は多様である(図③ -(1)-1.1)。このため、単純に家庭間の消費電力量を比較しても省エネに直接結びつかない。 条件が違い過ぎるためである。条件が比較的整った(比較可能)多数の実験場所で、省エ ネ対策を実施すれば、省エネは一挙に進む可能性がある。

比較可能(CVS)

図③-(1)-1.1 電力の比較可能性

図③-(1)-1.2 は、2013 年 8 月の一日あたりの平均消費電力量と床面積の関係を示した図 である。家庭のデータは、東京電力内の約 1,200 世帯へのアンケートより求めた。コンビ ニエンスストア(CVS)の値は、京都 48 店舗のモニタリングデータである。家庭の消費電 力量は、平均非木造建築で約 11kWh/日、木造建築で約 13kWh であったが、消費電力量の 分散は大きい。一方、CVSの床面積は家庭と大きく異ならないが、消費電力量は 400kWh/ 日以上と、家庭より約 40 倍大きい。分散も家庭に比較すると小さい。家庭に比べ、「比較 可能」であることがわかる。

図③-(1)-1.2 消費電力量と床面積との関係(家庭と CVS)

<研究開発の目標>

図③-(1)-1.3 に、本研究の内容を示す。基本的には、無線センサを活用した電流等の見え る化を実現し、そのデータ分析と現場視察を繰返し行うことで、省エネを実現することを 目指す。この手法は従来実施されてきた省エネ対策に他ならない。しかしこのプロセスを、 比較可能なセブン-イレブン (SEJ) の約 2,000 店舗で、無線端末約 16,000 台を使って実施 すると、新たな課題が浮上する。

図③-(1)-1.3 本研究の実施方法と目標

第一に、地域内や地域間での店舗比較など、多様な店舗比較が可能となる。さらに CVS は画一的な設備で同一のオペレーションを行っているので、"機能"当たりの電力消費量に 関して多数の店舗比較が可能となる。これらを実施するためには、大量のデータ(Big Data) を保存・処理するシステムが必要となる。

第二に、2,000 店舗で省エネ 10%を達成しなければならない。すべての店舗への現状視察は事実上不可能となり、限定された店舗での観察結果とデータより対策を立案し、すべての店舗へ展開し、この目標を達成する必要がある。

第三は、16,000というビジネススケール下での無線センサの試作、検査、実装、メンテ ナンスを実施することで、実用化の視点からグリーンセンサネットワーク(GSN)の仕様 を抽出できる。

本研究開発は、SEJ の 1,000 以上の店舗に無線センサを活用した"見える化"システム を実装し、省エネ 10%以上を実現すること、またこの大規模な実証実験を介して GSN の 仕様を抽出することをそれぞれ目標とした。

③-(1)-2 実証実験

研究開発期間中、多くのセンサ端末を試作したが、その内、データ取得の主体となった 無線センサシステムと、その実装方法について述べる。

③-(1)-2-1 無線センサ(クランプ、環境)と受信機

無線クランプセンサを SEJ 店舗の分電盤の中のブレーカに実装した。無線センサのプロ トタイプを図③-(1)-2-1.1 に示す。無線クランプメータには、2.4GHz の無線を使った。ク ランプにより電流値を一秒毎に計測し、その平均値を 10 秒間に 1 回、送信する。無線モジ ュールは、1.5V のボタン電池 (SR-44) で、約 2 年程度動作する仕様である。測定する電 流値に合わせて、2 種類のクランプを用意した。S タイプは 10mm 径、L タイプは 16mm 径までの電線をクランプでき、それぞれ 80A および 130A までの電流を計測できる。測定 精度は、50 および 60Hz の正弦波電流で±2.5%以内である。各センサはユニークな ID を 有する。受信データは、店舗内に設置されたストアコンピュータ (SC) の LAN 経由で取 得する。図は、2.4GHz と 950MHz の 2 つの無線信号をマルチ受信できるコンパクト受信機 である。約 200 のセンサ端末 (2.4GHz) を一つの受信機で同時に受信可能であった。CVS の省エネ対策を考慮する際必要となる、店内温湿度、エアコン・冷凍機器室外機周辺の雰 囲気温度、冷凍ショーケースのドアの開閉をモニタリングするための環境センサには、長 距離通信が可能な 950MHz の無線帯を用いた。このセンサは、取得した信号を 30 秒間に 1 回送信する。3V の CR2450 バッテリーで動作し、約半年間使用できる。

図③-(1)-2-1.1 無線センサのプロトタイプ

③-(1)-2-2 コンビニエンス・ストアへのセンサ実装

実験対象とした CVS は、セブン-イレブン・ジャパンの店舗である。SEJ は、国内で 17,277 店舗(2015年1月)を、海外で 54,996 店舗(2014年12月)の事業を展開している。2010 年5月に2店舗でテストを実施した後、同7月から立川地区11店舗に、110個のクランプ センサを実装した。受信データは受信機より USB 経由でパーソナルコンピュータ(PC) に転送した。店舗経営を指導する SEJ の OFC(オペレーション・フィールド・カウンセラ ー)が、各店舗で定期的に PC よりデータを抽出し、ネット上に設けられた分析システム にアップロードした。震災を経た 2011年7月には、京都市の 50店舗に 500 個のセンサを 実装した。受信機には、LAN 接続タイプを用い、各店舗に設置されたストアコンピュータ

(SC)を利用してデータ収集するシステムを構築した。各店舗の消費電力のデータは、自 店舗のストアコンピュータで閲覧でき、店舗での省エネ活動へ迅速に対応できるようにし た。そして同年度3月より、東北・東海地方の約2000店舗に16,000個のセンサ実装を開 始した。受信システムは前述の京都店と同じであるが、受信機には図③-(1)-2-1.1に示した マルチ受信タイプを適用した。またこれに合わせて、環境センサを実験的に導入した。 図③-(1)-2-2.1に店舗へのセンサシステム実装の手順を示す。

図③-(1)-2-2.1 コンビニエンス・ストアへのセンサシステムの実装

バックルームにある金属扉で覆われた分電盤を開けると、電灯 200V(単相)と動力 200V (三相 3 線)の2種類の金属扉が見える。この扉には、各ブレーカと什器との関連が表示 してある。この扉を開けると、各ブレーカとその配線が表れる。主幹および消費電力の大 きな冷凍・冷蔵ショーケース、空調等の配線に図③-(1)-2-1.1 に示した無線クランプを装着 する。動力では、三相(R/S/T)のうち一つの配線(R相)に装着した。取り付けけ終了後、 分電盤の扉を閉じる。受信機は、同じくバックルームに設置されている SC の裏側に取り 付けけ、SC と LAN ケーブルで接続した。接続後、SC の設定画面より、受信できている個々 のクランプセンサ ID を確認し、什器との関連を設定した。これらの実装作業は、15 分程 度で完了できる。従来の有線式クランプセンサの場合、配線の処理に時間がかかるため、 同様な作業に1時間以上かかった。実装の容易性は、無線センサの大きな特長である。セ ンサの実装は、Lタイプ(16¢)を単相3線200V(電灯)の主幹ブレーカに2つ、三相3 線200V(動力)の主幹ブレーカのR相に一つの計3個、Sタイプ(10¢)を、冷凍・冷蔵 機に一つ、2つの空調ブレーカに各一つ、2つのフライヤーのブレーカに各一つの計5個、 それぞれ実装するのを基本形とした。

分電盤および SC の距離は、店舗ごとで多様であり、近いもので数メートル、遠い店舗では 10 m 以上あった。

③-(1)-3 無線センサを利用した電流の可視化と省エネ

実装したクランプセンサにより所得したデータの分析結果、および CVS で実施した省エネ活動とその効果を紹介する。

③-(1)-3-1 コンビニエンス・ストア電力消費の実態

京都の実装店舗のうち、大きな改修がなかった 40 店舗(400 センサ)の 2012 年 7 月ま での約 300 日間の取得データより、CVS 消費電力量(1 日あたり)と気温(1 日の平均気 温)の関係を求めた(図③-(1)-3-1.1 の左図参照)。

図③-(1)-3-1.1 コンビニエンス・ストアの電力消費モデル

図において縦軸は、クランプセンサで得られた電流値から見積もった1日の消費電力量 である。横軸は気象庁で発表されている京都市の1日の平均気温である。平均気温30℃前 後の京都の夏季は、一年中最も消費電力量が大きい。これは、空調と冷凍・冷蔵ショーケ ースの消費電力が、気温とともに増加するからである。夏季消費電力量のほぼ半分がこれ らの機器によって占められる。これら機器の電力消費は、気温の低下とともに減少する。 しかし、冬季になると、暖房用途で空調を使用するため、空調の消費電力は再び増加する。 照明、ATM、コピー、おでん等の什器を駆動する単相 200V の電力量は、この期間ほとん ど変動しない。また、動力(三相三線)でも、室外機を必要としない冷凍機器(アイスク リーム)やフライヤーの電力量の温度による変化も小さい。これらの値は、40 店舗での測 定値を平均して求めたものであるが、各店舗で見れば、消費電力量は大きく分散する(図 ③-(1)-1.2)。図③-(1)-3-1.1 の右側には、空調と冷凍・冷蔵機の温度と消費電力量の関係を 示す。2014 年の全国店舗(1,860 店舗)のデータを用いて作成した。空調の消費電力は、 平均温度に対して"U"の変化を示し、冷凍・冷蔵機は温度に対して単調に増加する。冬 季、一日の平均気温が氷点下になる地域では、冬季の空調電力消費が夏季に比較して大き く、店舗全体の消費電力量も夏季よりも大きくなる場合がある。

③-(1)-3-2 コンビニエンス・ストア電力消費の地域間での比較

本研究開発では、岩手県、宮城県、福島県、新潟県、岐阜県、愛知県、三重県、東京都、 および京都府の店舗で、実証実験を行った。これら地域間では、気候、地勢、店舗オペレ ーションの質、および出店年数が異なる(出店が新しい地域では新しい設備の機器が多い)。 図③-(1)-3-2.1 は、日照時間と空調の消費電力量の地域比較である。

上図は、全日晴天と午後数時間晴れた日の店内温度の変化を示す。店内温度は、カウン ター、売場中央、および売場奥の3点を環境センサで計測した。全日晴天では、午後3時 ごろまで店内温度は徐々に上昇している。一方、大雨後の曇り空で、13時頃日照があった 日では(上図右)、日照があった時間帯だけ、温度の上昇が観察された。これらの結果は、 日照の有無が店内温度に影響し、空調消費電力量の多寡に関係していることを示唆してい る。

図③-(1)-3-2.1 の下図は、日照一時間当たりの空調の消費電力量の増加量を「日照係数 (kWh/h)」として算出したものである。各地域での値を箱ひげ図として表した。図より、 夏季は、日照とともに、空調の消費電力量は増加の傾向(日照一時間当り 1~2kWh)、冬 季は逆に減少の傾向を示している。夏季、名古屋地域の増加が少ないのは、市中心部の店 舗が多く、他の建物により日照が遮られるため、省エネ対策のための遮光カーテンの利用 が守られている等の理由が考えられる。名古屋では、このため冬季の係数は負の値になら ない。逆に上越や会津若松は、日照の影響を大きく受けている。地勢による影響により南 向きの店舗が多いと推測される。

初且伯丽奴	15	00	01	21	30	41	19	100	21	I
急増(8以上)	0%	10%	12%	5%	6%	17%	26%	30%	19%	369
一定(2以下)	20%	29%	8%	19%	9%	54%	0%	1%	4%	0%

図③-(1)-3-2.2 気温と消費電力との関係:(冷凍・冷凍機)

図③-(1)-3-2.2 に、気温と冷凍・冷蔵庫の消費電力量の関係を比較した。着目したのは、 夏季の消費電力量である。冷凍・冷蔵庫の消費電力量と気温との関係を求めた結果、大き く3つに分類できることが明らかとなった。夏季に大きく急増する機器、25℃以上でそれ ほど増えずに飽和したような状態を示す機器、およびその中間(平均的)である。平均気 温1℃の上昇で8kWh以上増える店舗を「急増」、2kWh以下の増加を示すものを「一定」 として、各地域での店舗数を求めた結果を、図③-(1)-3-2.2 の下表に示した。「急増」は名 古屋と岐阜が多く、「一定」は、いわきと仙台が多い。急増の理由は、劣悪な室外機の環境、 商用運転の設定の有無、機器の劣化等が考えられる。一定になるのは、機器の馬力不足が その主要因であろう。

地域間の比較により、ビルイン店舗の割合、室外機環境(室外機設置スペースを十分と れているか否か)、南向きの店舗の割合、日光の遮蔽物の存在、店舗設備の新しさ、および 店舗オペレーション等による消費電力への影響を巨視的に顕在化できる。

③-(1)-3-3 機能と消費電力量

CVS の電力は、照明、ATM およびサインポールなどを除く大半は、飲料や食品を冷やす、 食品の鮮度を保つ、および店内温度を快適な領域に維持する等、"適切な温度制御"に消費 されている。このため、環境センサで温度を計測し、その機器の電流を"見える化"して、 比較すれば、"機能"当りの消費電力量を明らかにすることが可能となり、消費電力量の"ム ダ"を顕在化できる。機能と消費電力量との関係から、消費電力量の"ムダ"を3つのタ イプに分類した(図③-(1)-3-3.1)。図では、"理想的"な機能・電力の関係を図の斜線領域 で表した。第一は、「低機能」である。電力の消費量は他と変わらないが、機能が足りない

(目標の温度管理ができていない)場合がこれに相当する。機能を満たさない電力消費は、 まったく"ムダ"である。第二は、目的の温度管理はできているが、通常より電力消費量 が大きな場合である。「低効率」と定義した。第三は「過稼働」であり、冷やし過ぎ、暖め 過ぎで多くの電力を消費している場合である。第二・第三の改善は省エネに直結し、第一 の改善は、直接、食品安全性や快適性の確保に関連する。

図③-(1)-3-3.1 機能と消費電力

図③-(1)-3-3.2 は、「低機能」の改善例である。チルドケース、アイランドケース内の温 度を環境センサで計測したところ、目標とする 5℃を大きく超えていた(図右)。そこで、 アイランドケースの入替、機器の馬力増加等の対策を実施した。その際の消費電力量を図 の左側に示す。入替による消費電力変化は、周辺気温が変化しているため、平均気温と一 日の消費電力量との関係で見ることができる。対策前(外気温が30℃前後)とすべての対 策後(15℃前後)の消費電力は一つの2次曲線上にあり、入替により消費電力量は、顕著 な増加や低減は無いと判断した。しかし、この入替により、チルドケース、アイランドケ ース内の温度は、目標の5℃を維持できるようになった。

図③-(1)-3-3.2 低機能の例(食品の温度管理)

図③-(1)-3-3.3 は、「低効率」の例である。冷凍・冷蔵庫の消費電力量が、夜遅く最大に なる店舗があった。環境センサで、室外機吸込み口の温度をモニタリングしたところ、午 後と明け方で、気温との乖離があった(上図)。現場を調査したところ、隣の居酒屋の室外 機の排熱が、冷凍冷蔵庫の室外機の吸込み口に向かって流れ込んでいることが明らかとな った。気温と吸い込み口温度が乖離する時間帯は、隣の居酒屋の営業時間と一致していた。 これにより、夏季 30kWh/日程度のエネルギー増加が生じていることが明らかとなった。省 エネ対策として、隣の居酒屋の室外機との間に遮蔽する壁を設けた(下図)。

隣の居酒屋の室外機排熱により、ウォークイン・チルドケースの消費電力量が30.4 kWh/day 増加。

図③-(1)-3-3.3 "低効率": 冷蔵・冷凍機の室外機環境

「過稼働」として、空調とフライヤーの例を示す(図③-(1)-3-3.4)。上図は、夏季空調の冷 房の例で、長時間「冷房」だけで運転する場合と、ドライモードを組入れた場合とでは、 店舗内の快適性に差異はなく、16%の省エネが可能であったことを示している。下図は、 フライヤーの例で、常時加熱(左図)ではなく、調理しない時にパワーセーブ・モードを 組入れることで、約7.6%の省エネが可能であった。これは、油の短時間での酸化を防止し、 廃油量を削減する効果をもたらした。

図③-(1)-3-3.4 過稼働の例(空調とフライヤー)

③-(1)-3-4 省エネ・ピラミッド

CVS の消費電力量の"見える化"を開始した当初は、消費電力量の推移を明らかにする だけで、省エネが可能であった。それは、空調、フライヤー、バックルーム空調、および サインポールなどの"不要な時間"の機器稼働を容易に抽出できたからである。さらなる 省エネを実現するために、店舗や地域での比較を行った。これにより、他と消費電力の挙 動が著しく異なる店舗の抽出が可能となり、その原因を探索することで、省エネ対策を実 施することができた。次のステップでは、環境センサを活用し、機能と消費電力量との関 係を明らかにし、電力の"ムダ"を判断する基準とした。また、店内機器の配置(特に店 内で熱を排出するアイスケースやフライヤーなど)のレイアウトまで考察した(相互作用)。 省エネ対策は、段階を追って難しくなる。それを、最終段階が、省エネ店舗設計となる、 省エネ・ピラミッドとして表現した(図③-(1)-3-4.1)。大きな省エネ効果を得ようとすると、 上位の対策が必要となり、対策立案に要する時間、専門性および対策コストも増加する。

CVS の消費電力量は気温により大きく変動する。また「比較可能」であるが、同じ馬力・ 容量の空調や冷凍・冷蔵機が設置されていても、店舗により消費電力は異なるという"個 別性"を合わせ持つことを考えると、省エネ対策は"容易ではない"ことが明らかとなっ た。それは、努力して実施した"対策の効果"が定量的に"把握し難い"ことに起因する。 さらに、無理に効果を算出しようとして、昨年度の比較や、他店舗との比較など"安易" な評価を行うと迷路に迷い込む可能性がある。さらに日々サービスの向上を目指す CVS では、新規サービスの実現と共に、エネルギー消費機会は増加する。日々向上するサービ ス、気温の変動(まったく同じ気温変動はない)、および予想のつかない人の行動など、消 費電力量に関係する要因が複雑に変化する中で、省エネ対策を立案し、その効果を把握し なければならない。それには、高度な分析が必要となる。この分析を"電力プロファイリ ング"と定義したが、この電力プロファイリング技術を確立することが、CVS の省エネを 実現する上で、最も重要である。「比較可能」な CVS でも、これだけの障壁が存在するこ とを考慮すると、比較可能性が著しく低い、家庭部門や業務部門の省エネ対策は、さらに 難しいと予想される。

356

図③-(1)-3-4.1 省エネ対策の階層

③-(1)-3-5 省エネ効果

本研究開発期間中の省エネ行為の促進対策、導入機器を図③-(1)-3-5.1 にまとめた。サービス向上のための、チルドケース増設、アイランド型チルドケース導入、コーヒーマシンの導入が期間中に実施された。これはすべて増エネ要因である。逆に、省エネにつながる 照明の LED 化、太陽光発電の導入、チルドケース等の老朽化機器の入替もすべての店舗で はないが、行われた。これまで述べてきた、電力使用量や店舗環境モニタリングによる省 エネ対策も実施された。このようにダイナミックに店舗状況が変化する中での、省エネ効 果を図③-(1)-3-5.2 にまとめた。この図は、無線センサによる計測を最後まで実施した全国 1,860 店舗(閉店した店舗、大幅に回収した店舗を除く)の4月~10月の一店舗・一日当 たりの平均消費電力値を 2012 年—2014 年にわたって比較したものである。前述のサービ スの向上や、年による気温の差異は考慮していない。それでも、2014 年には、2012 年に比 較して 10%消費電力量が削減できていることが明らかとなった。この削減量は、一般の 8,000 世帯の電力消費量に相当する(一般世帯の 40 倍の電力を CVS は消費すると仮定し試 算)。

図③-(1)-3-5.1 本研究期間中の導入機器、省エネ対策

図③-(1)-3-5.2 本研究開発の成果:省エネ効果

③-(1)-4 無線センサネットワークの構築とグリーンセンサネットワークの仕様抽出

本研究期間中に、試作し実装した無線センサを図③-(1)-4.1 にまとめた。図中括弧内の数 値は、実装した店舗数を示す。電流センサには、当初 2.4GHz の無線クランプセンサを用 いた。これは、小電力で稼働できるためバッテリー交換周期を長くできる等の理由による。 このセンサを用いた実証実験を、最初の 10 店舗から初めて、50 店舗、2,000 店舗へと拡大 した。2,000 店舗への実装時には、受信機には、2.4GHz と 950MHz の無線が受信可能な「マ ルチ受信機」を用いた。950MHz は、2.4GHz に比較して長距離通信が可能であるため、店 内環境のモニタリングに適していたからである。ほぼ同時に 950MHz の環境センサをトー タルで約 100 店舗に実装した。2013 年には、2,000 店舗に実装した 2.4GHz 無線クランプの バッテリー切れが予想されたため、全数(約16,000端末) バッテリー交換を実施した。 国内の電波法が改正され、950MHz から 920MHz に開発環境が移行したことを受けて、 920MHz の環境センサの試作を行った。また、1 クランプ当りのセンサコストを削減する ため、920MHz のプラットフォーム上で、マルチクランプ(2 チャンネル)を試作しテス トを実施した。マルチクランプでも 2.4GHz シングルクランプと同じように電流計測が可 能であることを確認した後、920MHz でバッテリー交換が不要な「借電型」2 チェンネル クランプを試作し、2.4GHz クランプが実装されていた 1,860 店に実装した(端末の総入替)。 この期間試作したプロトタイプセンサは、約 30,000 端末であった。国内 CVS の店舗数は、 51,934 店舗(2015年1月)であるので、すべての店舗に無線センサを 10~16 端末実装す ると仮定すると約 800,000 端末となる。この数の 3~4%の端末を研究期間中試作したこと になる。

図③-(1)-4.1 試作したプロトタイプセンサ

③-(1)-4-1 プロトタイプセンサの製造

2.4GHz の無線クランプセンサと 920MHz 借電型 2 チェンネルクランプを、10,000 端末以 上製造した。製造には、国内 EMS (electronics manufacturing service) を利用した。工程で は、待機電流値(10μ A 以下)と無線出力(2.4GHz では 1mW 以上、920MHz では 10mW 以上)を全数検査した。また交流発生器を検査工程に持込み、10A の交流電流を発生させ、 センサから出力される数値(AD 値)の分散をしらべた。最終出荷の前に、製造した受信 機とセンサ端末 100 台を 50m 程度離して設置し、1:100 の通信が現実に可能であることを 確認した。

③-(1)-4-2 電力プロファイリングシステム (データ収集・分析システム)

受信データは、2 つのルートでサーバーにアップロードされる。一つは、店舗に設置さ れたストアコンピュータ (SC) の LAN を経由して SEJ のデータセンターのサーバーへ、 他は3G回線を経由して産業技術総合研究所のサーバーへ、それぞれアップロードされる。 前者のルートでアップロードされるのは、初期の 2.4GHz および 950MHz 環境センサと、 最後に試作した 920MHz 借電型 2 チェンネルクランプのデータである。後者は、920MHz の環境センサのデータアップロードに活用した。図③-(1)-4-2.1 にその概要を示す。

図③-(1)-4-2.1 データ収集・閲覧システムの概要

SCを活用したデータアップロード方法では、分析加工したデータに、各店舗、SEJ本部、 および外部関係者の3者がアクセスできる。それぞれで閲覧できるデータの範囲、閲覧可 能までの時間、および分析内容が異なる。各店舗では、自店舗でのデータしか閲覧できな い。取得データは15分後から閲覧可能となり、一日の電気代等、フライヤーの電流波形な どにアクセスできる。SEJ本部では、閲覧までの時間および内容は各店舗のものと同様で あるが、全店舗のデータを閲覧できる。SEJ本部のデータセンターに蓄積されたデータは、 一日に一回の割合で、外部データセンターに移行され、そこで様々なデータ分析が行われ る(見える化WEB)。外部関係者(SEJ本部も含む)は、この見える化WEBにアクセスし て、前日までの分析データを取得する。図③-(1)-4-2.2に、分析画面の例を示す。見える化 WEBでは、運用しながら必要となる機能を追加していったため、多様な分析が可能である。 例えば、指定地域内で、一日の消費電力量がある数値の範囲にある(例えば 500kWh 以上) 店舗リストの表示、冷凍機やフライヤーの機器の異常検知(電流波形から推測)、環境セン サで取得した店内温度などが閲覧できる。

図③-(1)-4-2.2 電力プロファイリングシステム:分析画面の例

一方、3G回線(モバイルルータを使用)を活用したデータアップロードでは、ほぼリア ルタイム(1分後)に取得データを閲覧できる。また、閲覧できるデータも、SC経由の場 合とは異なり、タイムスタンプ(送信回数)、受信電波強度(RSSI: Received Signal Strength Indicator)、電池の電圧など多様である(図③-(1)-4-2.3)。

Day	wnload						Range	New Or	nly 5 m	ins	1 hour	all
No	ID •	Description •	Receipt Time •	Temp (°C)	Humidity (%)	Current /L * (A)	Current /R * (A)	pressure (hPa)	Data Sequence	RSS	Battery(₩)	Reciver, ID
1	B33439		2015-03-03 12:30:44	23.5	20.0	11.4	0.0	800.00	169617	108	3.86	R30022
2	B33441		2015-03-03 12:30:08	21.2	20.0	0.7	0.0	800.00	169639	120	3.85	R30022
3	B50027		2015-03-03 12:30:13	27.3	20.0	52.0	20.1	800.00	169633	126	3.88	R30022
4	B50029		2015-03-03 12:30:38	24.1	20.0	34.1	0.0	800.00	169636	128	3.93	R30022
5	B56807		2015-03-03 12:30:54	20.8	20.0	18.7	0.0	800.00	286052	0	3.02	R30022
6	E34004	相模原南橋本 ウォークイン上部 (中央)	2015-03-03 12:30:48	3.7	79.6	0.0	-	1005.70	318065	138	-	R10045
7	E34011	相模原南橋本 スチール棚上部	2015-03-03 12:30:06	5.2	75.7	0.0	-	1004.80	318059	132	-	R10045
8	E34013	相模原南橋本 ウォークイン下部 (奥)	2015-03-03 12:30:32	7.1	61.5	0.0	100	1004.80	318058	60	100	R10045
9	E34014	相模原南橋本 ウォークイン下部 (奥)	2015-03-03 12:30:20	7.8	64.1	0.0	-	1005.60	318060	126	-	R10045
10	E34051	相模原南橋本 ウォークイン下部 (入口)	2015-03-03 12:30:18	7.2	64.3	0.0	-	1004.10	318050	84	-	R10045
11	E34053	相模原南橋本 BR	2015-03-03 12:30:46	8.3	58.1	0.0	-	1003.90	318055	114	-	R10045
12	E34054	相模原南橋本 BR	2015-03-03 12:30:17	8.6	57.2	0.0	-	1006.00	66060	120	-	R10045
13	E34055	相模原南橋本 売場	2015-03-03 12:30:43	19.6	32.7	0.0	-	1003.50	318051	114	-	R10045
14	E34056	相模原南橋本 売場	2015-03-03 12:30:32	19.8	32.2	0.0	-	1004 00	318048	108	-	R10045

3G 回線を利用するメリットは、電源が存在する場所ならどこでも受信システム構築できる、データをほぼリアルタイムに取得できるため、SC を使ったシステム構築時のセンサ動 作や設置ポイントの妥当性検証に活用できる、さらに SC 利用と異なりデータ通信量の制 約がないため多数(数十個)の無線センサを一店舗に設置できる点にある。必要最低限の センサデータを定常的に取得するのが SC を活用したシステムで(定常型)、消費電力や店 内・機器温度に異常が観察された店舗の詳細なデータを取得するのが(多数のセンサを実 装し短期間データを取得)、3G 回線を利用したシステムである(随意型)。定常型と随意型 の両システムは、CVS の省エネには欠かすことができない。

③-(1)-4-3 無線データ受信率

無線センサによるデータ取得で課題となるのが、データの欠損である。これをデータ受信率(実際に取得したデータの数/理論的に送信されたデータ数)で定義した。たとえば、 2.4GHzの無線クランプセンサの場合、毎秒計測されるデータを平均して10秒間に一回送信する設定であった。1分間で6回データを理論上受信することになるが、実際に4回データしか受信できなかった場合、受信率は4/6(66%)となる。

2.4GHz の無線クランプセンサを 2,000 店舗への実装直後は、70% を許容閾値とすると, 約 16,000 個のセンサの 98% が許容範囲内に収まっていた (2012 年 8 月)。この許容閾値 は、電流波形の観察や電力量算出に大きな支障が出ない数値として定めたものである。一 方、920MHz 借電型 2 チェンネルクランプでは、実装直後の 2015 年 1 月現在で、99.5%の センサが受信率 90%以上であった (図③-(1)-4-3.1)

無線システムの場合、「100%」の受信率ではなく、ある程度のデータ欠損を考慮することが実用的である。

図③-(1)-4-3.1 データ受信率

③-(1)-4-4 無線センサ 15,000 端末のパッテリー交換

2.4GHzの無線クランプセンサでは、約15,000端末のセンサのバッテリー交換を行った。 図③-(1)-4-4.1は、その要因となった受信率の時間推移である。実装当初90%以上の受信率 を示していたセンサ数(13,000端末以上)が、2012年12月より急激に減少し、翌年3月 には約 9,000 端末になった。この受信率の低下は、バッテリー電圧の低下により生じたものだと考えた。そこで、2013 年 1 月末に全端末のバッテリー交換を決断し、交換バッテリーの調達、取替え工事作業のプランニング等を実施した。しかし、交換作業開始直前には、受信率は実装直後の状態まで回復した。受信率が回復した理由は未だ不明である。

図③-(1)-4-4.1 データ受信率の時間推移

バッテリー交換後、閉店や改装による実装店舗の減少はあるが、一年以上経った 2014 年 11 月時点でも、12,000 端末で受信率 90%を維持できている。また製造時(2012 年 3 月) に、評価用として残したセンサは、約 3 年経った現在(2015 年 3 月)まで動作している。 これらのことから、2.4GHz の無線クランプセンサのバッテリー寿命は、2~3 年であった と考えている。

図③-(1)-4-4.2 SR-44の調達 (パレット)

営業店舗、約2,000店舗でのバッテリー交換で明らかとなった課題を以下にまとめる。

1. バッテリーの入手期間

2.4GHz の無線クランプセンサでは、汎用品の SR-44 バッテリーを使用したが、約 15,000

個規模のバッテリーを短期間に調達することは困難であった。国内メーカへ依頼すると、 品質は確保されるが、受注生産で約半年の期間を要する。このため、米国のメーカより調 達した。

2. バッテリーの梱包

バッテリーはパレット(100 個単位)に梱包され送られてきた(図③-(1)-4-4.2)。各店舗 では8個のバッテリー交換が必要となる。8個単位に分けて運搬する際、ショートによる 爆発や電圧低下が生じた。このようなフィールドの交換用途には、個別包装されたバッテ リーが好ましいが、数が揃わない。

3. 回収バッテリーの管理

同様な理由で、回収したバッテリーの運搬管理が必要であった。

4. センサの破損

バッテリー交換の際、クランプを外し、センサのバッテリー収納ケースを開けて実装されたバッテリーを取外す必要がある。この一連の作業の中で、クランプの破損や無線アン テナの切断が起こる場合があった。また、再実装時に間違え、センサ ID と機器との紐づけが失われる場合があった。

5. 全交換の判断

全国に展開する店舗では、バッテリー電圧の低下が明らかであるセンサだけ「個別にバ ッテリー交換」という手法は煩雑となり採択できない。一つセンサのバッテリーが切れる と、全体の15,000 個も近いうちに切れるという判断をする。15,000 個のバッテリー交換の ためには、作業手順書を作成し見積りをとる、バッテリーを調達するという一連の作業が 必要となる。この作業には数か月の時間を要する。このため「一つあるいは複数個のバッ テリー切れ」がバッテリー交換作業開始のトリガーとなる。作業が開始されれば、それを 中断することは難しい。

バッテリー交換を実践した結果、フィールドでの大量のバッテリー交換は、現実的では ないことが明らかとなった。バッテリー交換が不要な無線センサを実現しなければ、10,000 ~100,000 端末での活用は難しい。

364

図③-(1)-4-5.1 920MHz 借電型 2 チェンネルクランプ

③-(1)-4-5 借電(メンテナンスフリー)クランプセンサの試作

図③-(1)-4-5.1 は、920MHz 借電型 2 チェンネルクランプの動作原理を示している。リチ ウムイオン充電池を内蔵している。省電力なスイッチで充電側と計測側に切り替える。一 秒計測で 60 サンプルの平均値を一分間に一回送信する。計測時間の間の 500msec が充電 期間に割り与えられる。充電期間には常時充電するのではなく、モニタリングしているバ ッテリー電圧により、充電するか否かを判断する。図には例として、約 30A が常時流れる 電流ラインに装着した場合の充放電特性を示す。充電池の電圧が 3.8V まで低下すると、充 電を開始し、電圧が 4.1V に到達すると、充電をストップする。充電開始から 4.1V までの 時間は、電流ラインに流れる電流値に依存する(図では数時間で充電完了)。2 つのクラン プを合わせて 1A 以上の電流で充電できる。この例では、フル充電から 3.8V まで低下する のに約15日に経っている。よって月に2回、年24回充電することになる。寿命は、充電 回数 500 回とバッテリーの仕様書には記載されていた。この数値からクランプの寿命を計 算すると約20年間となる。実際には充電池内の材料の経年劣化により、これより早まると 予想するが、少なくとも5年以上は稼働可能であろう。2014年12月末までに1,860店舗 に実装した 920MHz 借電型 2 チェンネルクランプセンサには、図で例示したセンサより大 容量のバッテリーを搭載している。現状のデータでは、電圧 4.1V から 3.8V まで 3 か月以 上要することが明らかとなっている。

③-(1)-4-6 スマートコンビニ GSN の仕様

本研究開発の結果より、スマートコンビニ GSN の仕様を考察する(表③-(1)-4-6.1)。前 に述べたように国内 CVS の店舗数は 51,934 店舗(2015 年 1 月) であるので、これら店舗 にすべて省エネに資する無線センサネットワークを実装すると想定する。まず、センサネ ットワークとして2つのタイプを用意する。全店舗を網羅する「定常型」と特異な状態を 把握するための「随意型」である。定常型では、数年以上、省エネのために必要な最低限 のデータ計測をする。電流の計測点は、電灯と動力の主幹ブレーカに 3~4 クランプ、空調・ 冷凍・冷蔵庫で、3~4 クランプが基本となる。各社でブレーカと機器との関係が異なると 予想されるため、主幹ブレーカ以外は、各社での判断となる。トータルとして一店舗あた り8~10端末が基本となろう。店内環境を計測する環境センサは5端末/店を目安とする。 測定点は、売場に3か所、空調・冷凍機の吹込み口、ウオークインの計測が基本となる。 ただ環境センサに関しては、現状メンテナンスフリー(バッテリー交換不要)端末が存在 しないので、1 年に一度のバッテリー交換が必要であることを考慮しなければならない。 環境モニタリングの店舗数を絞ることができるのであれば、「随意型」で代替可能である。 計測間隔は、クランプでは一秒以内が望ましい。フライヤー等電流が急激に変化する機器 がコンビニには多いためである。環境センサに関しては、温度は急激には変化しないので、 数分計測でも構わない。データ送信間隔は、無線クランプに関しては、一分前後が適当と 考える。これ以上の送信間隔では、冷凍・冷蔵機器のデフロストの挙動やフライヤーの稼 働を示す電流波形が平均化されて鈍くなり、識別し難くなる。

仮に 80 万端末でデータを取得したとすると(一分間送信と仮定)、一日のデータ量は、お およそ 80GB となる。定常型でのデータのアップロードには、新たな投資が不要となるた め、既に設置された通信インフラを利用するのが現実的である。このインフラには商品の 注文など経営情報が流れているので、業務を妨害しないように GSN データの通信量を最小 にする必要がある。店舗のどこに端末を置いても一つの受信機で受信可能な 920MHz が、 無線周波数として適切である(国内店舗)。クランプセンサによる計測は数年以上定常的に 実施されるので、バッテリー交換が不要な「借電型」が必要不可欠となる。

データの分析方法(電力プロファイリングシステム)は、各社の経営方針によって異なる。 人のオペレーションを中心に省エネ活動を推進する場合と、自動制御での省エネを目指す 場合に大別できる。

電流センサには、有線式の製品が多数存在する。無線センサは、データ欠損というデメリ ットはあるが、設置工事を大幅に短縮できるという特長は、24時間営業している店舗への 実装を考えると大きなメリットとなる。また、大きな省エネ効果を達成するには、店舗環 境を多点でモニタリングできる「環境センサ」が必須であることを考えると、電流と環境 計測を同時に実現できる無線センサシステムの優位性は不動であろう。

	定常型(すべての店舗)	随意型(特異な店舗)
目的	最低限の情報を"常時"計測	"特異"な店舗を詳細に計測
期間	数年~	数週間~数か月
端末個数	クランプ:8~10、環境:5	クランプ+環境(Max100)
総端末数	約800,000端末	-
計測間隔	~1秒以下(クランプ)	÷
送信間隔	~1分以下(クランプ):用途による が最長30分以下	÷
Data容量	約80GB/日(1分送信、5万店)	-
無線仕様	920MHz、10mW(店を一つの受信 機でカバーできる)	÷
メンテナンス フリー化	クランプでは借電は必須	不要
アップロード	店舗のインフラを利用(例:ストアコ ンピュータ)	3G回線
電力プロファ イリング	各社の経営方針による (自動か、人が主体か)	-

表③-(1)-4-6.1 スマートコンビニ・グリーンセンサネットワークの仕様

③-(1)-5 まとめ

比較可能(面積、構成設備)なコンビニエンス・ストア(CVS)の10%以上の店舗(約2,000店舗)に無線センサを"ばらまき"(10,000端末以上)電流や店内環境の見える化を 実現した。その比較・分析(電力プロファイリング)により2012年比10%の省エネを実 現した。この削減量は、家庭の8,000世帯の消費電力量に相当する。

本研究期間中、約 30,000 端末の無線センサを試作し、社会実証実験に活用した。この大 スケールでの無線センサの製造・検査・実装・メンテナンスを通して、スマートコンビニ 向け GSN の仕様を抽出した。バッテリー交換不要(借電型)なクランプセンサの実現によ り、国内に 50,000 店舗以上存在する CVS の省エネに GSN が適用可能であることを実証し た。

"ローゼンフェルトの法則"の実現へ貢献するには、電力プロファイリングシステムの 高度化が必要である。バッテリー交換不要な環境センサを開発し、全店舗へ実装し、定常 的に計測する。さらに建物情報(面積、構造、方位)や機器情報(取得年度、型式)を取 得しデータ化する。比較可能な多数店舗で、これら詳細な情報と、センサで取得する消費 電力・店内環境温度データを合わせて分析し、消費電力増加の要因を分析すれば、「自動要 因分析」、「自動省エネ対策抽出」のアルゴリズム構築の可能性が高まる。このアルゴリズ ムを「比較不可能」な領域に拡大していけば、高度な電力プロファイリングシステムを実 現できるであろう。 また、本研究開発で実現した無線プラットフォームを活用して、Intelligent-Maintenance のシステムへの応用も考えられる。電流センサや環境センサから収集した膨大な冷凍機や 空調機の稼動監視データと、動作条件や設置環境などに応じた状態変化を多面的に分析し、 故障の発生を高精度に予測するシステムを実現する。これには、バッテリー交換不要で長 距離通信が可能な「環境センサ」の開発が不可欠となる。

③-(2)-i) スマートオフィスのための(中小オフィス用)グリーンセンサネットワーク システムの開発【ダイキン工業(株)】

③-(2)-i)-1 研究開発の背景と目標

<研究開発の背景>

地球温暖化問題や法規制を背景に省エネへの関心が高まり、大規模ビルへの省エネシス テム(Building Energy Management System・BEMS)の導入が進んでいる。しかし、総 面積の半数を占める中小規模ビルでは、その導入は進んでいない。

中小規模ビルへ省エネ情報システムの導入を加速するには、システム導入・運用にかか る手間や費用の低減が重要であり、以下の3点が主要課題になる。

○設置工事の不要化: 配線や電源などの工事が必要になると、工事費が発生するだけで なく、テナント側との調整作業などが必要になる。

- ○投資回収期間の短縮:利益に直結しない投資が敬遠される中で、システム導入・運用 費の低コスト化とともに確実な省エネ効果が求められている。
- ○容易な省エネの実現:エネルギー管理者が不在であることの多い中小規模ビルでは、 高度な計測データ分析や対策実施が難しい。

これらの解決は大規模ビルを中心に導入されている従来 BEMS では難しく、工事不要で 低コストを実現できる新コンセプトや革新的センサが必要になる(図③-(2)-i)-1.1)。

<研究開発の目標>

中小オフィスの省エネルギー化を大きく推進するグリーンセンサ端末とグリーンセン サネットワークシステムの詳細仕様を抽出する。また、グリーンセンサ端末群と高性能受 信機から構成されるグリーンセンサネットワークシステムを実際に構築し、これを用いた 環境計測やエネルギー消費量の把握(見える化)及びエネルギー消費量の制御(最適化) により、10%以上の省エネ効果が得られることを実証する¹⁾⁻²⁾。

369

図③-(2)-i)-1.1 課題解決に向けた新コンセプトの位置づけ

③-(2)-i)-2 中小オフィス向け省エネ推進システムの開発

本研究開発では、グリーンセンサネットワークを用いた中小オフィス向け省エネ推進シ ステムの構築を目指し、コンセプトの立案と、それを実現するセンサ端末の仕様抽出を行 った。さらに、開発されたグリーンセンサ端末群と高性能受信機から構成されるグリーン センサネットワークシステムを実際に構築して実証に求められる機能検証を実施し、セン サ開発側にフィードバックする。

③-(2)-i)-2-1 中小オフィス向け省エネ推進システムのコンセプト

コンセプトの全体像を図③-(2)-i)-2-1.1 に示す。本開発では「天井にセンサ端末を貼るだけで、これまで見えなかったエネルギーロスをリアルタイムに見える化、さらに対策も提案して、利用者の省エネ行動を促進するシステム」の実現を目指す³⁾。「専門的な知識をもつ管理者が不在である」場合が多い中小オフィスにおいて、エネルギーロスが発生している場所を見つけ、速やかにその改善策を組み立てるアクションが生まれることを狙う。

図③-(2)-i)-2-1.1 コンセプトの全体像

さらに、本コンセプトを実現したシステムの導入・運用費は、利用者側が支払う総コス ト(センサ費、設置工事・試運転費、メンテナンス費、見える化/最適制御サービス費)を最 小化することを狙いに、2年前後で投資回収できるシステム構成を目標とした(図③ -(2)-i)-2-1.2)。この中で、既存クラウドサービスの活用、センサ設置場所・個数の最適化、 位置検知技術を用いたセンサ位置情報の自動登録等により、投資回収期間の適切化が見込 めることを確認した。これらの条件を満たす開発システムの有用性を表③-(2)-i)-2-1.1に示 す。従来無線センサや BEMS よりも、簡単に導入が可能で、専門知識不要で複数の省エネ 手法を運用できる点が特長である。

図③-(2)-i)-2-1.2 システム設置運用費の試算例(延床面積 3000m²の場合)

		GSNシステム	従来無線センサ	BEMS	センサ付空調機	
概要・特徴		永外線7ルーセンサ (2cm×5cm×薄膜)	S社 温湿度・CO2・照度他 (8cm×8cm×2cm)		(注な製造元) D社、 M社、H社 例: 人検知センサ(4個) 床温度センサ(1個) 風向独立フラップ	
		室内俯瞰・ロス解消	見える化	エネルキ・管理・制御	スマート空調	
専門知識を持つ管理者の要否 ◎ 不要 ~ × 必要		<u>目標値</u>	× (研究用途向け)	× (エネルキ [*] 管理者向け)	◎ (一般向け)	
低コストで導入できる		O 600 円/m²	× ~10,000 円/m²	△ 2000~4000 円/m²	⊚ +300~400 円/m ^{2 ※1}	
配線・電話	源工事の要否	Ø	O(要電池) ×		×	
オープン	指向(クラウド型)	Ø			×	
メーカ(空	調・照明)を問わない	Ø	〇 〇(I/F必要)		×	
ロス発生	(場所と対策)が分かる	Ø	×	△(低精度)	×	
	不在エリア制御	0	×	0	0	
省エネ	換気量制御	0	×	0	×	
メニュー	窓開閉ガイダンス	0	×	0	×	
	断熱不良箇所の抽出	0	×	×	×	
投資回収期間※2		O 2年	×	△ 3~6年 ^{※3}	△ 4~8年	

表③-(2)-i)-2-1.1 開発システムの有用性

※1 空調機価格を含めると2~3千円/m2

※2 D 社技術棟(450m2)を想定して試算。

※3 補助金 1/3、デマント 制御を加味。

③-(2)-i)-2-2 省エネ手法の選定

投資回収期間を短縮するには、システム導入・運用費を低コスト化するとともに、確実 に省エネ効果を得ることが重要になる。オフィスの電力消費の内訳は、空調(+換気)と照 明が全体の7割程度といわれており⁴⁾、これらの機器において、エネルギーロスが発生し ている場所を即座に見つけ、速やかに解消することで、大きな省エネ効果につながる。

中小オフィスの特性に適した省エネ手法を選定する為に、既存センサを用いて消費電力 と室内環境等の基礎データを収集し、エネルギーロスの要因を確認した。今回実測した図 ③-(2)-i)-2-2.1 に示すような使われ方[在席率が40%程度と低く、残業時間帯が長い]のオフ ィスでは、在席人数に応じて空調を緩める等の運用により省エネ効果が見込める。表③-(2) -i)-2-2.1 に示す4つの省エネ手法⁵⁾の効果試算を行ったところ、10%以上の省エネ効果が 見込まれたことから、これらの手法を本システムに採用することとした。

図③-(2)-i)-2-2.1 試算対象オフィスの使われ方

表③-(2)-i)-2-2.1 実測データに基づく省エネ効果の試算結果

省工ネ手法候補(空調&照明)		エネルギーロスの要因	省エネ効果 設備別・期間別(平日)			
	※文献調査等により予備選定	※定量値は建物により異なる	H23年	H241	ŧ	
			冬期 (12~3月)	中間期 (4~5,10~11月)	夏期 (6~9月)	
1	不在エリアでの停止/温度緩和	不在エリアの無駄運転	~4%	~6%	~8%	
	不在エリアでの消灯/調光		~16%	~16%	~17%	
2	在席人数にもとづく換気量制御	過剰換気 (基準値:1000ppm)	~11%	~13%	~10%	
3	中間期の窓開閉ガイダンス	無駄運転	-	~43%	-	
4	壁・窓:断熱不良箇所の抽出、改善	断熱不良による過剰放熱	~11%	~39	6	

③-(2)-i)-2-3 センサとシステム仕様の抽出

導入・運用費用を低コストで実現する(利用者側が支払う総コストを低減する)という 観点から、単一種類のセンサ(赤外線アレーセンサ)^のを用いて、複数の省エネ手法を実 施可能なシステム構成を検討・抽出した。さらに、サーバーの処理を低減する狙いで、セ ンサは生データの出力だけでなく、統計処理等を行った結果を出力できる仕様を提案した。 また、センサの位置登録を効率化するための自動登録方法の提案・評価を行った。

図③-(2)-i)-2-3.1 システム構成とセンサのデータフォーマット

図③-(2)-i)-2-3.2 UWB 方式を用いたセンサ位置の自動登録の評価結果 ※本位置検知システムの一部は、YRP ユビキタス・ネットワーキング研究所様に協力をいただいた。

③-(2)-i)-2-4 分析機能・自動制御機能の開発

15m

本システム開発では、クラウド上に集約した赤外線アレーセンサデータをもとに省エネ 推進のための情報を生成するアプリケーションの開発を行った。本アプリケーションの構 造を図③-(2)-i)-2-4.1 に示す。このアプリケーションは、ロス分析機能(ロス発生箇所の見 える化・省エネガイダンス)と自動制御機能(空調・照明の最適化)で構成する。

図③-(2)-i)-2-4.1 開発アプリケーションの構造(処理フロー図)

③-(2)-i)-2-4-1 見える化画面

見える化画面の構成を図③-(2)-i)-2-4-1.1 に示す。この画面は、エネルギーロスが何処で 起こっているかをリアルタイムに表示する要約画面と4つの詳細画面で構成する⁷⁾⁸⁾。

要約画面では、在室者が一目でエネルギーロス発生と室内環境を把握できるように、ロ スの発生を示すアイコンと室温/人分布を、部屋の平面図と重ね合わせて表示する。本シス テムでは、4 つの省エネ手法に基づいてロスの発生有無を検出し、最大ロスの発生場所に アイコンを表示する。併せて、その対策を画面下部にガイダンスする。このガイダンスは、 サーバーに予め登録しておき、発生したロスの種類と程度に基づいて選択・表示する。

詳細画面では、専門的な知識を有する人向けに、エネルギーロスの分布状況を確認でき る俯瞰図を表示する。

図③-(2)-i)-2-4-1.1 見える化画面の構成

③-(2)-i)-2-4-2 分析機能(ロス発生場所の特定、及び、省エネガイダンスの出力)

分析機能は、前述の4つの省エネ手法に基づき、ロス発生場所の抽出とそれを解消する 省エネガイダンスを特定する。各手法の分析概要を表③-(2)-i)-2-4-2.1 に示す。 不在エリア制御では、人がいない不在エリアを人位置情報から検出するのと同時に、冷 え過ぎ/暖め過ぎ等の場所を温度情報から検出する。そして、検出ロスの程度に応じて空調 機の停止や設定温度緩和をガイダンスする。例えば、過剰冷房が発生していると、図③ -(2)-i)-2-4-2.1 に示すように床面ほど温度が低くなる傾向があり(冷気溜まりが発生)、こ の状況を赤外線アレーセンサで精度よく検出する。なお、この CFD 解析の結果は、従来の 計測方法のように机上に一定間隔で温度センサを配置すると、机上では温度が低下してい ないところもあるので、過剰冷房の発生を見逃す可能性を示唆している。このことは赤外 性アレーセンサの優位性を示していると解釈できる。

換気量制御は、在席者が設計人数より少なく、換気量が過剰な状態を人数情報から検出 し、適正な換気量をガイダンスする。この換気量は室内 CO2 濃度が 1000ppm になるよう に設計人数と在席人数の比率から算出する。なお本システムでは、可変風量制御ができな い換気装置で換気量制御を行うことを想定し、間欠を含む連続運転から停止までの4 段表 示とした。

中間期の窓開閉は、外気冷房が有効な時間帯を外気温度と室内温度情報から判断し、空 調停止と窓開けをガイダンスする。窓開けガイダンスの検討においては、外気温度が高い 場合に一部の空調を併用する運用と、外気温度が低い場合に窓を少し開ける運用による室 内環境の変化を CFD 解析で確認した。図③-(2)-i)-2-4-2.2 に示す通り、室温を維持しつつ窓 開けを有用に活用できることが示唆された。

断熱不良箇所の抽出は、 外気への熱移動が大きく空調負荷が高い場所を温度の変化履 歴から検出し、熱還流率の分布で表示する。この機能は専門的な知識を有する人が断熱改 修の優先順位付けや改修効果の確認の際に使用することを想定している。

省エネ手法	分析(見える化)機能	入出力データ	
	概要	アルゴリズム	
①不在エリアの 停止/温度緩和	・温度分布図と人数分布図をリアルタイム に作成し、重畳表示する。 ・ロス発生(不在運転または冷やし過ぎ・暖 め過ぎ)のエリアを抽出し、即時通知する。 ・発生ロスの解消方法をガイダンスする。	[温度分布図の作成] 赤外線7レーセンサを16台(4×4) の温度セッザ(x, y, 値とみなし、 コンタ図を作成。 [人数分布図の作成] 赤外線7レーセッサ出力の人数か らコンタ図を作成。 [ロ2発生エリアの抽出]	< 入力データ> <u>赤外線アレー</u> ・赤外アレー最小値 ・大数の最小値 ・天井付近温度* <u>Web公開データ</u> ・外気温 ^{G31} < 出力データ>
	N台 エリアを抽出して意思 大教分 ローク 人教会 (2)人教分布図 N台 0人のエリアを 物出して重量	人数分布が0人と、温度が指 定範囲(冷房:27℃以下、暖房: 21℃以上)のエリアを抽出。 [ガイダンス] 温度緩和を奨励。 [更新頻度] 1分毎	・設定温度 ・運転・停止 ※ :冷房時・暖房時・その他時 の判定に使用する。
②換気量の 最適化	・①で作成した人数分布図をもとに、「現在 人数/定員人数」を推定して重畳表示する。 ・削減可能な換気量と削減方法をガイダンス。	[現在人数の推定] センサ出力値を合算。 [定員人数の取得] 初期設定値として入力。	< 入力データ> <u>赤外線アレー</u> ・人数の最小値 < 出力データ> ・運転・停止
	人数 (1)人数分布図 生物 ×N台 サレー (1)人数分布図 N台 (2)(3)人数・適切換気量表示	[刊]滅り前24 (安永里] = (現在人数・定員人数) ×100% [ガイダンス] 間欠運転を推奨。 [更新頻度] 1 分毎	
 ③ 窓開閉 ガイダンス (冷房時期) 	 現在自然換気が有効な外気条件かを判断。 有効であれば、窓開けと空調停止可能な場所をガイダンスする。 (1)が気温 ・ (1)が気温 ・ (1)・気温 ・ (1)・気 ・ (1)・ ・ (1)・ ・ (1)・ ・ (1)・ ・ (1)・ ・	[自然換気有効の判断] 外気温が15℃~25℃で有効 と判断(省エネセ/ター準拠)。 [空調停止可能な場所] 室温が指定範囲(20~28℃)、 かつ、外気温より高いエリア。 [ガイダンス] 窓開すと空調停止を推奨。 [更新頻度]1分毎	< 入力データ> <u>赤外線アレー</u> ・赤外アレー最小値 <u>Web公開データ</u> ・外気温 < 出力データ> ・運転・停止
④断熱不良 箇所の抽出	 ①で作成した温度分布図[複数]をもとに、 「温度変動量の分布図」を作成・表示する。 ・温度変動が著しい場所を、断熱対策すべきエリアとして通知する。 ※¹¹ <li< td=""><td>[変動量の分布図の作成] 各計測点で、過去複数日の「1 日の温度変化の最大値を算出** し、コンタ図を作成。 [温度変動が着い場所] 変動が指定範囲(外気温変動 の80%以上)のエリア。 [更新頻度] 1日毎(ユーザ指定時刻)</td><td>< 入力データ> <u>赤外線アレー</u> ・赤外アレー最小値 < 出力データ> ・なし</td></li<>	[変動量の分布図の作成] 各計測点で、過去複数日の「1 日の温度変化の最大値を算出** し、コンタ図を作成。 [温度変動が着い場所] 変動が指定範囲(外気温変動 の80%以上)のエリア。 [更新頻度] 1日毎(ユーザ指定時刻)	< 入力データ> <u>赤外線アレー</u> ・赤外アレー最小値 < 出力データ> ・なし

表③-(2)-i)-2-4-2.1	分析機能の一覧

図③-(2)-i)-2-4-2.1 冷やし過ぎ発生時の室温分布(CFD 解析結果)

図③-(2)-i)-2-4-2.2 中間期の窓開け時の室温分布(CFD 解析結果)

③-(2)-i)-2-4-3 自動制御機能

自動制御機能は、分析機能で抽出した省エネガイダンスの内容を、空調機等への制御指 令データに変換し、空調コントローラに対して送信する機能である。処理フローを図③ -(2)-i)-2-4-3.1 に示す。

図③-(2)-i)-2-4-3.1 自動制御機能の処理フロー

③-(2)-i)-2-5 センサ開発側へのフィードバック

実用性の高いセンサ端末及びセンサネットワークの実現に向けて、以下の要件の達成を 目指して開発を進めた。

・設置方法: 設置が簡単で、かつ、安定した電力供給ができること。

・検知精度: 不在を正しく検知すること。また、人数誤差を±1人以下に抑えること。

・受信率 : データの欠落を 10%以下に抑えること。

システムの実用性向上のため、試作センサ端末 [提供:オムロン、ローム] と試作コン セントレータ [提供:NTT データ] を用いて実証に求められる機能検証を行い、センサ開 発にフィードバックした(オフィスワーキングを通して実施)。

③-(2)-i)-2-5-1 設置方法

当初に計画していた「天井面に貼る」という設置方法では、発電量が不十分であった。 そのため、発電量確保を優先した設置方法として、「照明の直近に、マグネットで設置す る」という方法を提案し、センサ開発側にフィードバックした。

	センサ端末	アプリ(見える化、自動制御)
重複の補正	・16×16のエリア内で、人数検出しない エリアを設定(マスク)する機能を追加。 これにより、人数のダブルカウントを回避。	_
隙間の補正	-	・隙間エリアの人数は0人とし、温度は隣接 センサから補完する。問題(例:誤った不在 エリア制御)がある場合、センサを追加する。

図③-(2)-i)-2-5-1.1 センサ設置方法

③-(2)-i)-2-5-2 検知精度

実証物件にて一気通貫の動作確認を行った際、人検知精度(正しい人数を検出する割合) が11%と低い結果となったため、その原因分析と対策検討を行い、センサ開発側にフィー ドバックした。最終的に、精度42~85%(最大人数~最小人数)まで向上できた。 対策前後の精度評価結果を図③-(2)-i)-2-5-2.1 に示す。精度評価は、2台のセンサを用いて、 4人居るエリアの検出を行い、正しく検出(=4人)される割合で評価を行った。

ここで、検出人数の誤差は、図③-(2)-i)-2-5-2.2 に示すように、最大人数・最小人数とも -2人~+2人とばらつきがあった。そこで、人数検出値を安定させるために、アプリケー ション側において、最大人数・最小人数の平均値を用いる機能を搭載した。その結果、誤 差±1人以内の割合を、88~96%(最大人数~最小人数)から、100%(平均人数)に向上 させることができ、ばらつきを低減できた。

図③-(2)-i)-2-5-2.1 人検知精度の改善結果

③-(2)-i)-2-5-3 受信率

実証物件にて一気通貫の動作確認を行った際、センサデータの受信率が40%と低い結果 となったため、その原因分析と対策検討を行い、センサ開発側にフィードバックした。通 算、4回に渡って機能改善・検証を行い、最終的に受信率85%まで向上できた。 具体的には、以下の対策提案を行い、センサ開発側に実施して頂いた。

<原因と対策>

- ・通信衝突
 ⇒データ送信仕様の調整。
- ・受信機のフリーズ ⇒受信機のエラー発生時の処理を追加。
- ・発電量 ⇒発電量重視の設置方法に変更。

・一部のセンサ端末でデータが全欠落 ⇒故障の確認を行い、故障端末を交換 受信率の向上に向けて実施した機能改善・検証の経緯を図③-(2)-i)-2-5-3.1 に示す。

また、上述のセンサ側の改善に加え、アプリケーション側においても、データ欠落時で も安定動作するためのデータ補間機能を開発した。具体的には,温度データが欠落してい る位置は隣接する位置の温度から補間処理を行い、また、センサデータが一時的に欠落し ている場合は、過去のデータに遡って補間(上限:10分前まで)する処理を行う機能を搭 載した。

実	証場所		D社 事務所 センサ端末 41台 GCON 1台	î	O社 事務所 センサ端末 5台 GCON 1台		■受		
受信	2回/2;	分	85%		90%	γ	4	部会 4 3	
率	1回/1:	分	40%⇒85%		86%			20	0% 0% 000 3.00 6.00 9.00 12:00 15:00 18:00 21:00 0.00
対	策	仕様((通信/設置場所)	動作	Eセンサ台数, 受信率	■1分 受信状	<u>リ上データ欠落</u> : <mark>況(</mark> 15~16時	容 手)	課題と対策
導) [7/1	人時 1~]	送信[送信(^{30秒} 設置	回数:1回/1分 仕様: 以内(乱数) 場所:端,中央	動作 受信 ※H	Fセンサ:38台/41台 言率:40% 26.07.14 14:00~16:00	センサ番号 <			 ・41台中3台で、データが全欠落。 ⇒設置時に故障の可能性あり。端末を交換。 ・発電量不足により、起動~停止を繰返し。 ⇒発電量確保の為、照明中央付近に設置。
照月 [8/6	度UP 5~]	送信[送信(^{30秒} 設置	回数:1回/1分 仕様: 心内(乱数) 場所: <mark>中央</mark>	動作 受信 ※H	Fセンサ: 40台/41台 言率 :82% 26.08.07 14:00~16:00	センサ番号			 ・41台中2台で,動作不良。⇒回収,修理 ・1~2分の短時間のデータ欠落が発生。 ⇒送信仕様を調整。[回数:1回⇒2回]
2回 (11	送信 / 15~)	送信[送信(^{30秒} 設置	回数: <mark>2回/1分</mark> 仕様: 心内(乱数) 場所:中央	動作 受信 ※H	Fセンサ: 40台/41台 言率 :69% 26.11.17 14:00~16:00	村ンサ番号			・41台中2台で、動作不良。 ⇒回収、修理 ・センサデータ全欠落(2分)が発生。 ⇒多量データ衝突による受信機フリーズの可能性 受信機のリセット時間を短縮し、乱数見直し。
1回 乱募 [12	送信 汝調整 /11~]	送信[送信 5)+10 設置	回数 : 1回/1分 仕様 : ₅時間10N秒(№0~ 0秒以内(乱数) 場所 : 中央	動作 受信 ※H	Fセンサ: 41台/41台 言率 :85% 27.01.16 14:00~16:00	センサ番号) (人) ()))) 町		-

図③-(2)-i)-2-5-3.1 受信率改善の経緯

③-(2)-i)-3 実証実験

開発されたグリーンセンサ端末群と高性能受信機から構成されるグリーンセンサネット ワークシステムを実際に構築し、これを用いた環境計測やエネルギー消費量の把握(見え る化)及びエネルギー消費量の制御(最適化)により、10%以上の省エネ効果が得られる ことを実証した。

③-(2)-i)-3-1 実証システムの構築

実証実験を行った建物概要と対象オフィスの主要設備を表③-(2)-i)-3-1.1 に示す。これらのオフィスに対し、実際にシステムを構築し、省エネ効果の実証実験を行った。実証システムの構築例として、赤外線アレーセンサ、コンセントレータ、及び、見える化端末の設置風景を図③-(2)-i)-3-1.1 に示す。

建	物名	D社 事務所	O社 事務所		
地域		大阪府堺市	東京都港区		
延	床面積, 階数	約5,267㎡(地上7F地下1F)	約850㎡(地上4F)		
	対象フロア	約486㎡(4F事務所エリア)	約84㎡(3F事務所エリア)		
	空調機	ビル用マルチ室外機×3台 天井埋込カセット型室内機×12台、	ビル用マルチ室外機×1台 天井埋込カセット型室内機×3台、		
換気装置		外気処理機×1台	換気扇×3台 全熱交換式換気装置×1台		
照明機器		照明×24系統	照明×3系統		
	開閉可能な窓	有	有		

表③-(2)-i)-3-1.1 実証物件の概要

- 設置センサ:赤外線アレーセンサ端末 × 41台、コンセントレータ ×1台、見える化端末×1台

図③-(2)-i)-3-1.1 実証システム(機器設置)構築の一例

<実証システムの構築(一例)>

⁻ 実証場所:事務所 [約500㎡]

D社における実証システムの詳細を図③-(2)-i)-3-1.2 に示す。赤外線アレーセンサを用いた 見える化機能を基本に,空調・換気・照明機器の省エネ対策を実施する構成とした。D社 においては、空調コントローラを使用して自動制御[最適化]も併用できる構成とした。ま た、換気風量を細かく調整できない機器であった為、後付けで簡単に間欠運転制御ができ る汎用コントローラとスイッチを追加した。

図③-(2)-i)-3-1.2 実証システムの詳細[D社]

③-(2)-i)-3-2 実証実験の実施

③-(2)-i)-3-2-1 実験結果の概要

前述の実証物件(2件)において、H26年夏期から実証システムを使用し省エネ効果を 評価する実証実験を行った。その結果、両実証物件のいずれにおいても、夏期・中間期・ 冬期の各代表期間でシステム導入前の電力を基準として 10%以上の省エネ効果を達成し た。各実証物件で得られた省エネ効果の概要について、図③-(2)-i)-3-2-1.1に示す。

図③-(2)-i)-3-2-1.1 実証結果の概要

両物件とも夏期・冬期については、「不在エリアの停止/設定温度緩和」と「換気量削減」 が省エネ効果の要因であった。特に冬期の省エネ運用については、D社がシステム導入前 から省エネ運用を行っていたのに対し、O社は今回の実証実験によって温め過ぎのロスや 過剰換気によるロスが発生している事が確認でき、ガイダンスに従った設定温度調整や換 気量調整を行ったため、より高い省エネ効果を得ることができた。

また、中間期の省エネ効果については「窓開けによる空調停止」が主な要因となってい る。中間期の外気が低い条件下で窓を開けることによって、適温を保ちつつ空調機を停止 または運転台数を低減でき、さらに、換気装置も停止または運転時間を低減することが可 能となる。かねてより省エネ運用を行っていたD社についても、本システムにより窓開け とそれに伴う機器運用方法の判断が可能になったことで、省エネ効果を得ることができた。

③-(2)-i)-3-2-2 省エネ行動の分析結果

構築したシステムがどの程度活用されていたかを把握するため、利用実態について分析 を行った。客観的に観測された省エネ行動としては、以下の結果となった。

- ・出社した日(平日)は、省エネ対策がほぼ毎日実施された。
- ・実施された省エネ対策としては、換気量の調整が大半を占めた。
- ・1日の内で、省エネ実施頻度が高いタイミングは、出社直後と昼休み直後。

図③-(2)-i)-3-2-2.1 利用実態について分析結果

また、利用者の生の声・行動を確認するために、ヒアリングを行った。この結果より、目 に入り易い場所に設置することで、省エネ意識の向上に役立つことが明らかになった。具 体的なヒアリング内容と結果を以下に記す。

・導入前に比べて、省エネ行動が増えましたか?

⇒かなり増えた。特に換気なんて、これまで気にしていなかった。

⇒画面があるので、コミュニケーションが生まれて省エネ意識が上がった。

・1日何回程度、画面を見ましたか?

⇒3回以上は見ている。入口付近の受付カウンターに置いてある

ので、入退室時 [トイレ、休憩、コピー] に目に入り、確認する

・画面を見ようとしたきっかけは何ですか?

⇒画面の横を通って目に入った時が多い。通りがかった部門外の

<u>人に聞かれる</u>こともあった。

⇒"暑いな?"と思って、温度確認のために見ることも。

③-(2)-i)-4 活用分野

エネルギー管理者が不在である場合が多い中小オフィス向けに、省エネ推進システムを円 滑に普及させる為には、BEMS 導入による割安感を与える工夫が重要となる。その方策と して、蓄積データの活用や様々なサービスとの連携によりシステム導入の価値を高める追 加機能の検討を行った。

図③-(2)-i)-4.1 に、検討結果の全体像を示す。各建物に設置した赤外線アレーセンサでは、 一定時間毎に得られる熱画像から温度分布と人分布情報を作成する。これを部屋の大きさ や設計人数等の建物情報と紐付けて、クラウド上に蓄積する。

本省エネシステムでは、この蓄積データを利用してエネルギーロスの発生場所を分析し、 省エネに繋がるガイダンス情報をリアルタイムに配信する見える化アプリケーションが提 供される。この他の展開として、温度分布と人分布の履歴情報の動画化や外部データベー スとの連携によるランキング表示の追加が考えられる。以下に、この要旨を説明する。

蓄積データの動画化では、指定した期間での室内温度分布と人分布の変化を再現する動 画を蓄積データから作り、これを温熱クレーム等の発生時に再生し、原因の早期解決をサ ポートする情報を管理者やオーナー向けに提供する。

ランキング表示では、人分布の履歴情報から在席パターンを分類し、使われ方が類似す るビル同士で室内温度やエネルギー消費量等を順位化し、管理者や利用者に提供する。さ らにスマートメーター等の外部データと連携することで、類似ビル間での原単位比較を可 能とし、建物価値を評価する際の情報を提供する。

これらは一例であり、蓄積データの2次的利用やネットワークでつながった外部データ ベースとの連携により、新しい情報やサービスを管理者や利用者に提供できる可能性があ ると考えている。

図③-(2)-i)-4.1 蓄積データを利用方法

③−(2)−i)−5 まとめ

本プロジェクトにおける成果のまとめを、以下に記す。

- ●中小オフィス向け省エネ推進システムを開発
 - ・中小オフィスに適した新しいコンセプトを立案。
 「天井にセンサ端末を貼るだけで、これまで見えなかったエネルギーロスを リアルタイムに見える化(対策も提案)し、誰でも簡単に省エネを推進できる」
 - 温度・人数分布データを活用してロス発生位置・程度を推定、
 さらに、省エネガイダンスを表示できるシステム※を実現。
 ※空調・照明の自動制御も可能(オプション機能)。
- ●実オフィスにて、省エネ効果を実証(2014年夏期~)
 - 複数オフィス [大阪、東京] にシステムを構築し、実際に利用。
 - 10%以上の省エネ効果を確認※(夏期・中間期・冬期代表期間)。 ※表示(見える化)のみ/自動制御併用の2種類で確認。

③-(2)-i)-6 参考文献

伊藤・前田:「グリーンセンサネットワークプロジェクト」の取り組みと課題,電気学会誌
 Vol.133-4,pp204-205,2013

2) 西野・橋本:省エネルキ、一化に向けた空調制御の取り組みとセンサネットワーク, 電気学会誌 Vol.133-4,pp206-209,2013

3) 鈴木,西野,西村,樋江井,今本,橋本:中小規模ビル向け省エネ情報システムの開発 (第1報)開発コンセプトと省エネ効果の試算結果,空気調和・衛生工学会大会 2013, Vol.9, pp85-88, 2013

4) 財団法人 省エネルギーセンター(H21):『オフィスビルの省エネルギー』

5) 社団法人 日本ビルヂング協会連合会(H20):『ビルエネルギー運用管理ガイドライン オフィスビルにおける地球温暖化対策のより一層の推移に向けて』

6) 本多・田中:環境センシングデバイスの開発,電気学会誌 Vol.133-4, pp210-213, 2013

7) 鈴木,西野,井ノ口,樋江井,橋本:中小規模ビル向け省エネ情報システムの開発(第2報)在室者による省エネ行動を促進する情報提供方法,H26年度空気調和・衛生工学会大会(秋田),F-2,2014

8) Nishino, A., Suzuki, M., Inokuchi, Y. and Hashimoto, S., A Study on BEMS based on behavioral economics for small and medium-sized buildings, 5th International Conference on Applied Human Factors and Ergonomics, 353, 2014

③-(2)-i)-7 補足

■分析機能のアルゴリズム検討のためのシミュレーション結果

不在エリア制御:不在エリア発生時の制御指針として、温度緩和を行うべきか空調停止 を行うべきかを CFD 解析により検討した結果、制御エリアにおける環 境温度に差はないことから、本システムでは、電力削減分でメリット のある空調停止を行うこととした。

中間期窓開け:窓開け時に室内環境が不快とならない外気温度と空調運転台数を決定す るため、CFD解析により検討した結果、図③-(2)-i)-7.1b に示すパラメ ータでガイダンスと制御を行うこととした。

図③-(2)-i)-7.1a 省エネ効果の高い制御パラメータの検討(不在エリア制御)

図③-(2)-i)-7.1b 省エネ効果の高い制御パラメータの検討(中間期窓開け制御)

■O社における実証システムの構築

○社での実証システムは、赤外線アレーセンサを用いた見える化機能を基本に、空調・換気・照明機器の省エネ対策を実施する構成とした。対策の実施方法は、見える化端末に表示されるガイダンスに従い手動で操作する構成とし、見える化端末は人目に付きやすい入口周辺に設置した。また、換気の省エネ対策を簡単に実施することを狙い、後付けで簡単に間欠運転制御ができる汎用コントローラとスイッチを既設スイッチに併設した。

- 実証場所:O社 事務所 [約84㎡] - 設置センサ:赤外線アレーセンサ端末 × 5台、コンセントレータ ×1台、見える化端末×1台 - 制御対象:空調機×3台、 換気装置×1台、 照明× 3系統

図③-(2)-i)-7.2a 実証システム(機器設置)[O社]

図③-(2)-i)-7.2b 実証システムの詳細[O社]

■実証場所での省エネ効果の詳細

実証を行った D 社、O 社における、夏期・中間期・冬期の外気温度と省エネ効果の関係 を図③-(2)-i)-7.3a、b に示す。

図③-(2)-i)-7.3a D 社における実証結果

図③-(2)-i)-7.3b O 社における実証結果

③-(2)-ii) ナノファイバー構造自立電源を用いたグリーンセンサネットワークシステム の開発【住江織物(株)】

③-(2)-ii)-1 研究開発の背景と目標

<研究開発の背景>

近年、電力の流れを供給側・需要側の両方から制御し、最適化するスマートグリッド構 想の実用化に注目が集まっている。関連技術として、各種通信機器、スマートメーターや 超伝導ケーブル、大規模蓄電システムなどの電力制御技術、電気自動車・プラグインハイ ブリッド自動車のインフラ整備など多岐にわたり、BEMS (Building Energy ManagementSystem)・HEMS (Home Energy Management System) など、ビルや住宅レベル での実証実験も盛んに行われている。

本研究開発では、特に省エネ化が進んでいない中小企業の小規模事業者向けオフィスを 対象とした。表③-(2)-ii)-1.1 に示す全産業における中小企業・小規模事業者の集計結果¹⁾に よると、小規模事業者と定義する従業員20人以下の中小企業の割合は、全体の86.5%に 達しているが、小規模事業者用オフィスでは空室時の消灯の徹底や温湿度設定の適正管理 等の省エネ活動には取り組んでいるものの、一般的に省エネシステムを導入している大中 規模ビルのオフィスと比べて、省エネ化への取り組みが進んでいないのが現状である。

その課題として、「省エネ化に向けたネットワークシステム・制御装置の導入やシステム運用等による初期投資費用が大きいこと」、「センサの配線や電源設置工事に費用と手間がかかるということ」が挙げられる²⁾。

以上から、資金面と施工面での制約が最大の理由であることが分かる。本事業の実施に より開発される低コストでメンテナンスフリー自立電源搭載型無線センサ端末は、室内照 明下で高効率の電力供給を実現する電源を供する。このような自立電源を搭載した革新的 センサを中小企業の小規模オフィスへ適用することで、省エネ化に向けたネットワークシ ステムを構築することが実現できる。

また、図③-(2)-ii)-1.1 に示す、開口部からの熱負荷・損失³⁾ およびオフィスビル⁴⁾ やー 般家庭の消費電力⁵⁾ から算出した小規模オフィスの想定消費電力データを基に、エネルギ ーロスポイントを抽出し、室内温度・照度の最適化を図り、最も消費電力が高い冷暖房・ 照明の消費電力を低減するネットワークシステムを構築する。このシステムにより、消費 電力 10 %以上の削減効果が期待される。

	全規模 (大企業と中小企業・ 小規模事業者、全産業)	中小企業・小規模事業者 (全産業)	うち小規模事業者 (全産業)
事業者数(社)	386 万	385 万	334 万
割合(%)	100	99.7	86.5

表③-(2)-ii)-1.1 中小企業・小規模事業者の割合

図③-(2)-ii)-1.1 開口部の熱負荷・損失および小規模オフィスの想定消費電力

<研究開発の目標>

現在最も省エネ化が進んでいない小規模オフィスにおいて 10 %以上の省エネ効果を実 証するネットワークシステムを構築し実証実験を行う。

室内温度を測定し、冷暖房の最適制御を行うとともに開口部からの熱負荷・熱損失を低減して冷暖房効率の向上を図る。さらに、室内光量を測定し、照明器具の照度最適化を図るネットワークシステムとの融合により、10%以上の省エネ効果を実証する手法の検証およびセンサ端末駆動条件を抽出する。

③-(2)-ii)-2 スマートオフィスのための(中小企業小規模オフィス用) グリーンセンサ ネットワークシステムの設計

エアコン冷暖房温度の最適化、開口部での熱負荷・損失の制御、照明照度を最適化する ために、季節ごとに1日の温度・照度、エアコンおよび照明の消費電力量変化を環境デー タとして収集し、データベース(DB)化を行った。また、発電環境の確認、自立電源開発 へのフィードバック、省エネポイントを抽出し、室内環境を視覚的に把握するため室内環 境見える化ソフトウェアを設計・試作した。

③-(2)-ii)-2-1 測定環境および室内環境測定方法

省エネ実証実験は、大和ハウス工業総合技術研究所実験住宅内の実証実験部屋を拝借 し、小規模オフィスを想定したモデルルームで実施した。オフィス室内の温度・照度計測 のため、足元・作業机上・頭上および室外に既存センサ端末(SII 製ワイヤレスネットワ ークセンサ端末"Mr.匠エネ")合計20個(室内18点、屋外2点)を設置し、センシン グ間隔は10分とした。また、室内に設置したセンサ端末の高さは、それぞれ足元150mm、 作業机上800mm、頭上1700mmとした。各部屋には照明として蛍光灯4ユニットとエア コン1台、エアコンおよび照明の消費電力量測定センサを設置し、データ読み取り間隔は 10分間とした。図③-(2)-ii)-2-1.1 に環境測定実験室内の概略図を示す。開口部(窓)に近 い位置に設置したセンサを窓側センサ、開口部から遠い位置に設置したセンサを奥側セン サとする。エアコンと照明電源スイッチのON/OFFはプログラムタイマーで制御し、稼働 時間はオフィス稼働想定時間の9時から17時までとした。環境測定期間は各季節1ヶ月 間とし、エアコン設定温度は冬季20℃、夏季28℃に設定した。得られた測定結果につい ては、代表的な部屋を抽出しデータ解析を行った。

図③-(2)-ii)-2-1.1 環境測定実験室内概略図

③-(2)-ii)-2-1-1 環境データ分析結果

季節毎の環境測定データより、室内温度・照度のバラつきとエアコン消費電力量を分析 した。図③-(2)-ii)-2-1.2 に実証環境下の温度および照度に対するエアコン消費電力推移に 関する代表的なデータを示す。

春季および秋季については、屋外との温度差も室内での温度ムラも小さいため1日のエ アコン消費電力量が500Whを下回った。図③-(2)-ii)-2-1.2(a)より、オフィス稼働開始時間 9時の室内温度は季節や天候によって多少のバラつきはあるものの、基本的にエアコン稼 働1時間後には設定温度に達し、その後も温度は一定に保たれることがわかった。しかし、 外からの太陽光取り込み等により窓側と奥側で温度にバラつきが有る場合や外気温と室内 のエアコン設定温度との差が大きい場合、エアコン消費電力が増加する傾向にある。冬季 と夏季では9時から17時までの室内平均温度分布からもわかるように、センサ配置場所 によって温度ムラが5℃程度ある(図③-(2)-ii)-2-1.2(b)および図③-(2)-ii)-2-1.3 参照)。特 に、窓からの熱負荷・損失が大きいためか、温度差も大きく、エアコン消費電力省エネ化 には室内温度のバラつきを低減する手法として開口部を制御する必要がある。

図③-(2)-ii)-2-1.2 (a)室内および屋外温度に対するエアコン消費電力推移, (b)作業机上の照度に対するエアコン消費電力推移

図③-(2)-ii)-2-1.3 冬季および夏季の室内平均温度分布

③-(2)-ii)-2-2 開口部制御による環境測定

開口部からの熱負荷・損失は、夏季では開口部からの熱負荷割合 71 %、冬季では熱損 失割合 48 %であり、オフィス環境において最もエネルギーロスが大きい開口部を制御す ることにより、エアコンの消費電力量削減が期待できる。

小規模オフィスでの開口部制御条件としては、①窓ガラスのみ、②窓ガラス+カーテン、 ③窓ガラス+ブラインドとし、室内の温度・照度・エアコンおよび照明消費電力量の1日 の変化を通期で観測した。測定期間は各季節につき1週間とした。

③-(2)-ii)-2-2-1 開口部制御による環境測定結果

実験結果より、窓ガラスのみの場合と比較すると、カーテンやブラインドによる開口部 制御では室内温度・照度のバラつきが無いことを確認した。また、9 時から 17 時までの 屋外平均温度と室内平均温度の温度差とエアコン消費電力量の関係を把握し、開口部制御 による省エネ効果を検証した。

図③-(2)-ii)-2-2.1 に冬季および夏季の屋外平均温度と室内平均温度の温度差とエアコン 消費電力量の関係、表③-(2)-ii)-2-2.1 に各開口部条件におけるエアコン消費電力量と省エ ネ効果を示した。解析結果より、冬季は開口部制御のためにカーテンを用いることで室内 の熱放出の抑制による保温効果を実証し、12%減の省エネ効果が見込めた。また夏季は、 窓ガラス+カーテンまたは窓ガラス+ブラインドを用いることで屋外からの熱の遮熱によ り、カーテンでは22%減、ブラインドでは26%減の省エネ効果が見込めた。比較的簡単 なカーテン・ブラインドを用いた開口部制御による省エネ効果は、冬季のカーテンによる 保温効果と夏季の遮熱効果が大きく寄与している。春季および秋季は、エアコン消費電 力低減による省エネ化ではなく照明制御等の省エネ手法の検討が必要とされることがわか った。

表③-(2)-ii)-2-2.1 各開口部条件におけるエアコン消費電力量

			開口部条件	
		窓ガラスのみ	窓ガラス+カーテン	窓ガラス+ブラインド
冬	エアコン消費電力量(Wh)	2266	1998	2395
季	省エネ効果(%)	-	▲ 12	6
夏	エアコン消費電力量(Wh)	1201	936	893
季	省エネ効果(%)	-	▲ 22	▲ 26

※省エネ効果は開口部条件窓ガラスのみの結果を基準として算出

[※]冬季・屋外平均温度と室内平均温度の差-14 度、夏季・屋外平均温度と室内平均温度の 差7 度でのエアコン消費電力量を算出

③-(2)-ii)-2-3 センサ端末駆動条件の抽出

センサ端末駆動環境を把握・条件抽出した情報を今後の自立電源開発へフィードバック することを目的とした。環境測定データベースより、開発する自立電源搭載無線センサ端 末の実証環境下での最低照度解析を行い、センサ駆動時に必要な照度を確認した。

また、分光放射照度計(KONICA MINOLTA 製 CL-500A)を用いて光スペクトルの測定 を実施し、省エネ実証環境下での自立電源用使用可能光スペクトルを抽出した。開口部条 件が窓ガラスのみの場合では、開口部付近で測定を行い、蛍光灯と太陽光が合わさった光 スペクトルを測定した。それに対して、開口部条件が窓ガラス+カーテン・ブラインドの 場合は蛍光灯のみとした。

③-(2)-ii)-2-4 室内環境見える化ソフトウェアの開発

オフィス環境の省エネを行うにあたり、照明および空調の使用量を最適化することが最 も効果的である。また最適化制御については自律システム制御が理想だが、導入コストを 抑えるためには室内にいる人間が照明・空調の操作を担う必要がある。

この照明・空調操作の判断基準として、室内の照度・温度がどのような状況にあるのか を視覚的に把握するためのソフトウェア開発を行った。

③-(2)-ii)-2-4-1 室内環境見える化ソフトウェアの開発の結果

図③-(2)-ii)-2-4.1 に開発した室内環境見える化ソフトウェアの PC 表示画面を示す。

本ソフトウェアは、1 画面の中にリアルタイムの室内環境ビジュアル画面、センサグラ フ、消費電力グラフ、日時および外気温を表示可能である。なお、環境データ測定は照度・ 温度・湿度の3 項目に対応しており、室内18 点(6 箇所、高さ3 水準)を測定点とし、 その測定データを基にビジュアル化を行っている。ビジュアル化の手法に関しては、照度・ 温度・湿度それぞれのデータについて等値線を用いており、各測定点間の値については色 調のグラデーション表示により値の変動を表している。

このソフトにより室内環境のムラが視覚的に確認できるようになるため、環境の快適性 を保ちながら照明・空調制御による省エネを行うことが可能である。

図③-(2)-ii)-2-4.1 室内環境見える化ソフトウェア PC 画面

③-(2)-ii)-3 省エネ効果

冬季はカーテンの保温効果により、12%の省エネ効果が見込める。夏季はカーテン・ブ ラインドの遮熱効果により、カーテンでは22%、ブラインドでは26%の省エネ効果が見 込める。よって、小規模オフィスでの開口部制御による省エネ効果検証により、夏季およ び冬季に10%の省エネが達成できる見込みが得られた。

また、開発した室内環境見える化ソフトを用いて、室内環境の温度・照度ムラを視覚的 に確認することで、オフィス環境の快適性を保ちながら、きめ細かな照明・空調制御を行 うことによってさらなる省エネ化が期待できる。

③-(2)-ii)-4 まとめ

小規模オフィスにおける「省エネの手法検証」と「自立電源搭載センサ端末駆動条件の 抽出」を目的に、モデルルーム(大和ハウス実験住宅)において実証実験を行った。小規 模オフィスでは省エネへの投資が難しいと考え、開口部(窓)制御による省エネ効果の検 証を行い、夏季および冬季に10%の省エネが達成できる見込みが得られた。また、室内で の光照射量およびスペクトルを測定し、小規模オフィス環境では400 lx 以上の照度が得ら れることを確認した。省エネ効果については最終目標を概ね達成した。

③-(2)-ii)-5 参考文献

 中小企業・小規模事業者の数(2012 年2 月時点)の集計結果、経済産業省、中小企業庁 (平成 25 年)

2) 中小企業庁委託「エネルギー環境問題への対応に関する調査」、株式会社三菱総合研 究所、(2009 年 11 月)

3) 坊垣和明、由本達雄、木原幹夫、近藤伸彦、居川康祐:性能向上リフォームガイドブック、一般社団法人 日本建材・住宅設備産業協会、省エネルギー建材普及促進センター(2010)
4) 茂木正:中小ビル等の更なる省エネ・節電に向けて~省エネからエネルギーマネジメントへ~、経済産業省 資源エネルギー庁 (平成24年6月)

5) 資源エネルギー庁 平成 16 年度電力需給の概要 (平成 15 年度推定実績)

6) 佐俣満夫,福田亜佐子:緑のカーテンによる省エネ効果及び CO2 削減効果の試算、横浜 市環境科学研究所報、33、 17-20 (2009)

③-(3) スマートオフィスのための(大規模商業ビル)グリーンセンサネットワークシス テムの開発【高砂熱学工業(株)】

③-(3)-1 研究開発の背景と目標

<研究開発の背景>

年間のエネルギー消費量が原油換算で1,500kL以上のエネルギー管理指定工場において は、年1%の省エネが義務付けられているが、これらの大規模ビルにおいても、更なる省 エネルギーを推進していく必要がある。図③-(3)-1.1に示すように、百貨店、総合スーパー、 ショッピングセンターの商業施設のエネルギー消費原単位は、駐車場を除く単位面積当た りの数値で見ると3,000MJ/㎡・年から4,000 MJ/㎡・年超で、ホテルや病院と同程度の値とな っており、省エネルギーの推進による削減効果は大きなものとなる。

大規模商業ビルにおいては、省エネルギーと室内環境の快適性の両立が重要であり、そのためにはエネルギー消費量や環境計測による見える化が必要であるが、通常このような大規模商業ビルに設置されている中央監視装置や BEMS(Building and Energy Management System)では、センサのコストや配線工事費用等の制約によってセンサによる監視点数が限られているのが現状である(表③-(3)-1.1 参照)。

安価で無線通信機能、自立電源機 能及び超低消費電力機能を搭載した グリーンセンサを活用してネットワ ークシステムを構築することにより、 配線工事を不要としセンサを多数設 置しながらシステムの低コスト化を 図ることにより、更なる省エネルギ ーの実現を推進していく必要がある。

図③-(3)-1.1 業態別エネルギー消費原単位 (出典:省エネルギーセンターホームページ http://www.eccj.or.jp/commercial_bldg/)

内容	既存技術(BEMS、中	中央監視装置)	グリーンセンサネ	ットワーク
見える化、 エネルギー管理	・電力等の系統単位レベルでの トレンド等 ・エネルギー管理	・通常配線工事有り ・定期的なメンテ要	・電力等の機器単位レベルでの 見える化、環境の見える化 ・エネルギー管理	 ・自立電源・無線機能 (配線工事不要) ・メンテナンスフリー
自動制御	 ・ビルごとの省エネ制御 ・遠隔監視・制御 		 ・ビルごとの最適制御 - 省エネと快適性の両立 ・複数ビルの最適制御 ・ビッグデータ解析を活用した 予測制御 	
データ管理	・ビルごとのサーバで管理 (一部クラウドサービス利用)	 ・投資回収年数が長い ・蓄積データ容量に 	・クラウドサービス利用 (複数ビルデータの一元管理)	 ・投資回収年数が短い (目標:3年以下)
センサ設置数	・センサが高価であるため設置 個数は最小限 ・センサ設置に技能を要する	ש פועאויש	 ・安価なため多数設置が可 ・センサの設置、追加、移動が 容易 	

表③-(3)-1.1 既存技術(BEMS、中央監視装置)との比較

大規模商業ビルと同様にエネルギー消費原単位の大きい大規模クリーンルームにおい ても、空気の清浄度や一定の温湿度を確保しながら更なる省エネルギーを図っていくため にエネルギー消費量や環境計測による見える化が重要である。既設の中央監視装置や BEMS での計測データに加え、安価でメンテナンスフリーのグリーンセンサネットワーク システムを構築することにより、センサを多数設置しながらシステムの低コスト化を図る ことにより、更なる省エネルギーの実現を推進していく必要がある。

<研究開発の目標>

本研究開発では、延床面積 20,000m²以上の大規模商業ビルの省エネルギー化を大きく推 進するグリーンセンサ端末とグリーンセンサネットワークシステムの仕様を抽出する。グ リーンセンサ端末群と高性能受信機から構成されるグリーンセンサネットワークシステム を実際に構築し、大規模商業ビルにおける無線通信等の状態を検証し、これを用いた環境 計測やエネルギー消費量の把握(見える化)及びエネルギー消費量の制御(最適化)により、顧 客購買活動に影響なく 10%以上の省エネ効果が得られることを実証する。

これを実現するためには、大規模商業ビル特有の大空間構造に適し、不特定多数の在館 者を対象とした空調を中心に大きな効果が期待できる省エネ手法の選定と導入、この省エ ネ手法そのものの導入・運用費用を低コストで実現することがポイントになる。省エネ手 法の選定に当っては、以下のような大規模商業ビルの特性を考慮することが重要である。

- ・全体のエネルギーのうち、空調が約40%、照明・コンセントが30~40%、冷凍・冷蔵が 5~10%となっており、空調及び照明・コンセントに関する省エネが重要である。
- ・面積の広い物品販売エリアは、在館者の時間的、空間的変動が大きく、温度等のムラの
 発生の可能性があるとともに、外気取入量の適正化が省エネに有効である。
- ・1 階出入口からの外気侵入が大きな空調負荷となる可能性が大きい。

・エスカレータ等の吹き抜け空間が、室内環境に悪影響を与える可能性がある。

また、大規模商業店舗は都市百貨店、都市量販店、郊外量販店等に区分されるが、商業 形態を変えた複数の商業ビルを抽出し消費エネルギーの分析を行うことで、各種大規模商 業ビルの省エネ推進に向けたグリーンセンサネットワークシステムの展開を図る。

さらに、3,000 m²程度の大規模クリーンルームに電流センサ、温湿度センサ等を設置し、 グリーンセンサネットワークシステムの実証実験を行う。クリーンルーム内の環境の見え る化や実験装置単位での電流値計測等を行うことにより、省エネに影響を及ぼすパラメー タを抽出し、省エネ効果 10%を目指す。

③-(3)-2 大規模商業店舗での GSN システムの構築と実証実験

③-(3)-2-1 郊外型大規模量販店での実証実験

郊外型大規模量販店にグリーンセンサネットワークシステムを構築し、無線通信の状態 を検証するとともに、大規模商業ビルでの電力の使用状況や室内環境実態を把握し、10% 以上の省エネ効果を実現する手法を提案することを目的とする。

対象とする建物は、地上5階、店舗面積約40,000 ㎡で、物販店舗、飲食店舗、ストック ヤード等を有する。空調設備としてガス焚冷温水発生機4台の他に、冷却塔、冷温水ポン プ、冷却水ポンプ、空調機、外調機、ファンコイルユニット(FCU)等で構成される。対象 建物の年間のエネルギー使用状況を図③-(3)-2-1.1 に示す。対象建物では、全体のエネルギ ー消費量の約15%を空調用ガスに使用している。

③-(3)-2-1-1 実証方法

グリーンセンサネットワークシステムの構築に当り、無線電流センサ 200 台を分電盤内 に設置し、無線ネットワークを構築し電力消費データの収集を行った。ネットワーク構成 及びセンサ等の設置状況を図③-(3)-2-1-1.1、2 に、使用したセンサ、受信機等の仕様を表 ③-(3)-2-1-1.1 に示す。

図③-(3)-2-1-1.1 ネットワーク構成

機器	仕様	台数
無線電流センサ	クランプ内径10mmφ 100個、クランプ内径16mmφ 100個、温 度センサ実装、2.4GHz無線出力 、電池駆動	200
無線センサ受信機(アンテナ)	2.4GHz/920MHzマルチ受信型、LAN(Ethernet)接続、商用電 源駆動	4
データ収集装置	STiNC+PC:アンテナからのデータ受信(STiNC)、収集データ蓄 積・暗号化(BOXコンピュータ)	4

表③-(3)-2-1-1.1 使用したセンサ、受信機、データ収集装置の仕様

(1) 分電盤内の無線電流センサの設置状況

(2) 分電盤、アンテナ、データ収集装置の設置状況図③-(3)-2-1-1.2 センサ等の設置状況

室内環境やエネルギー消費量の把握のために、空調設備機器廻りに従来型の温湿度セン サや流量計を設置し室内環境やエネルギー消費データを収集した。熱源機器廻りの計測ポ イントを図③-(3)-2-1-1.3 に、空調機器廻りを図③-(3)-2-1-1.4 に示す。合わせてキュービ クル2箇所に電力センサを合計 63 台設置した。計測期間は、2013 年 2 月から 2014 年 2 月 までの約1年間である。

図③-(3)-2-1-1.3 熱源機器廻りの設置状況

図③-(3)-2-1-1.4 空調機器廻りの設置状況

③-(3)-2-1-2 実証結果

③-(3)-2-1-2-1 無線電流センサの通信状態の確認結果

分電盤 1L-32 と 2L-31 の無線電流センサの通信状態に関して評価を行った。期間は 2013 年 2月 27 日の1日間で、受信率(=受信データ数/送信データ数)で評価した。表③-(3)-2-1-2-1.1 に示すように、全体では 9 割強のセンサで受信率 90%となっておりおおむね良好な結果となっている。

受信率	1L-32	2L-31
75%未満	0	0
75%以上80%未満	0	3
80%以上85%未満	0	3
85%以上90%未満	0	4
90%以上95% <mark>未満</mark>	1	13
95% <mark>以上100%未満</mark>	22	69
100%	0	1
センサ総数	23	93

表③-(3)-2-1-2-1.1 無線センサの受信率の分布

③-(3)-2-1-2-2 無線電流センサでの計測結果

無線電流センサでの計測データを系統別に集計した電力消費量の日変動を図③ -(3)-2-1-2-2.1 に示す。物販店舗やスットックヤードの電力消費量は、休日、平日ともに日 中の営業時間帯はほとんど変動が見られないが、飲食店舗の電力消費量は時間帯により大 きく変動するとともに、平日に比べて休日の方が電力消費量が大きく、特に休日は 14 時頃 にピークが発生している。飲食店舗は、厨房機器の運転状況が電力消費量に大きな影響を 与えていると考えられる。

表③-(3)-2-1-2-2.1 系統別電力消費量の日変動の一例

系統別の電力消費量の内訳を図③-(3)-2-1-2-2.2 に示す。この施設では飲食店舗の単位電

カ消費量が大きく、厨房機器等の運転方法改善による省エネが有効である。各系統の用途 別電力消費量の内訳を図③-(3)-2-1-2-2.3 に示す。物販店舗ではFCU(ファンコイルユニット) の比率が高く、室内環境を悪化させない範囲で FCU を停止できれば省エネ効果は大きい。 IF 飲食店舗は、厨房用動力とともに電灯の比率も高いため自然光を利用した照明制御が効 果的である。2F 飲食店舗も厨房用動力の比率が高いが、コンセントの比率も高く自動販売 機等の影響が考えられる。電力の詳細計測で系統別用途別の電力消費構造を把握すること により、使用状況に合った有効な省エネ手法を提案することが可能となる。

図③-(3)-2-1-2-2.3 系統ごとの用途別電力使用量

③-(3)-2-1-2-3 空調熱量、温湿度等の計測結果

夏期のストックヤード系統空調機及び店舗系統外調機、FCU の運転状況を図③ -(3)-2-1-2-3.1、2 に示す。ストックヤード系統では、空調機を3時から22時までのスケジ ュール運転をしていたが、空調機運転開始後1時間程度で室温は設定温度に達しているこ とから、予冷運転時間を短縮し営業開始前1時間程度の予冷運転とする省エネ対策を提案 した。店舗系統では早朝3時から営業開始までは外調機で予冷運転を、営業時間帯はFCU で空調を行っていたが、予冷運転時間帯は外気をFCUのみで運転したほうが省エネである ことから予冷時間帯もFCUでの運転に変更するよう提案を行った。

図③-(3)-2-1-2-3.2 店舗系統外調機、FCUの運転状況

店舗系統での予冷運転時間帯での空調機の運転方法を変えた場合の空調の運転状況の 比較を図③-(3)-2-1-2-3.3 に示す。FCU による空調に変更した省エネ対策後の空調処理熱量 は、外気温度が高いにもかかわらず対策前に比べて小さくなっている。省エネ対策前後で の外気温度と空調処理熱量の比較を図③-(3)-2-1-2-3.4 に示す。平均で見ると省エネ対策前 に比べて省エネ対策後は処理熱量としては約 30%の削減となった。また、ストックヤード 系統と同様に、営業開始前1時間程度の予冷運転とすれば更なる省エネが見込める結果と なっている。

図③-(3)-2-1-2-3.3 対策前後での運転状況の比較 図③-(3)-2-1-2-3.4 対策前後での熱量の比較

③-(3)-2-1-3 省エネ効果試算

前述の空調予冷運転方法の変更を含め、抽出された省エネ項目と省エネ量を表③ -(3)-2-1-3.1 に示す。6つの省エネ項目の合計では11.4%の省エネとなっている。

省エネ項目	電力削減量	ガス削減量	削減率	備考
	[kWh]	[m ³ N]	[%]	
1.ストックヤード系統の空調予冷時間の短縮	94,248	4,863	2.2%	夏期、予冷時間を1時間に変更
2.店舗系統の空調予冷運転方法の変更	77,050	18,417	3.0%	夏期、外調機運転からFCU運転に変 更、予冷時間を1時間に変更
3.照明の間引き	33,021	-	0.6%	店舗系統の照明を2割間引き運転
4.冷凍機の冷水温度、冷却水温度の適正化	-	17,562	1.5%	冷水出口温度を6.9月に7℃から10℃ に変更、冷却水温度を5℃低下
5.取入外気量の削減	34,073	24,421	2.7%	平日の取入外気量を50%削減
6.FCUの間引運転	77,014	-	1.4%	冬期、中間期、店舗系統のFCU運転 台数を50%削減
合 計	315,406	65,264	11.4%	

表③-(3)-2-1-3.1 省エネ効果試算結果③-(3)-2-2

③-(3)-2-2 都心型複合商業ビルでの実証実験

大規模商業ビルの特徴の1つであるエスカレータ等の吹抜け大空間廻りにグリーンセン サネットワークシステムを構築し、無線通信の状態を検証するとともに、室内環境実態を 把握し、10%以上の省エネ効果を実現する手法を提案することを目的とする。

対象とする建物は、地上14階、地下4階、延床面積約90,000 m²で、百貨店、専門店舗、 映画館、飲食店舗等で構成される。実証実験の対象とした吹抜け大空間は、エスカレータ の設置された4層吹抜け空間廻りの共用ロビー部で、2台の空調機で空調されている。

③-(3)-2-2-1 実証方法

グリーンセンサネットワークシステムの構築に当り、無線温湿度センサ 32 台、無線 CO₂ センサ 6 台を吹抜け空間廻りの共用ロビー部に設置し、無線ネットワークを構築し環境デ ータの収集を行った。計測データは GCON を介してクラウドに送信されインターネット上 でデータの見える化が可能である。ネットワーク構成及びセンサ等の配置を図③ -(3)-2-2-1.1、2 に、使用したセンサ、受信機等の仕様を表③-(3)-2-2-1.1 に示す。計測期間 は、2013 年 8 月から 2015 年 2 月までの約 1 年半である。

図③-(3)-2-2-1.1 ネットワーク構成

図③-(3)-2-2-1.2 センサ等の配置

表③-(3)-2-2-1.1 使用したセンサ、受信機等の仕様

機器	仕様	台数
無線温湿度センサ	920MHz無線出力、電池駆動	32
無線CO2センサ	920MHz無線出力、AC電源駆動、	6
無線センサ受信機(アンテナ)	CO2用受信型/中継器、温湿度センサ用受信機	3
クラウド接続機器	GCON	1
データ収集装置	収集データ蓄積(BOXコンピュータ)	1

③-(3)-2-2-2 実証結果

③-(3)-2-2-2-1 無線温湿度センサの通信状態の確認結果

無線温湿度センサの受信状況を電波強度と受信率で評価をした結果を図③-(3)-2-2-2-1.1、 2 に示す。受信機とセンサの距離が離れるほど電波強度、受信率ともに下がる傾向にある が、距離が近くても電波強度、受信率の下がる箇所があり、距離だけでなく設置方法等の 他の要因の影響を受けて変化していると考えられる。受信強度と受信率の関係を図③ -(3)-2-2-2-1.3 に示す。受信強度が高いほど受信率は上昇し、概ね受信強度が 60 を超えると 受信率は 95%以上となっている。現地での受信機や無線センサの設置に当っては、受信強 度の確認が有効である。また、GCON からクラウドへのデータ送信に関しては、NTT デー タにおいて送信成功率 100%で長期安定稼動ができていることが確認されている。

図③-(3)-2-2-2-1.1 センサ位置と電波強度

図③-(3)-2-2-2-1.2 センサ位置と受信率

③-(3)-2-2-2-2 無線環境センサでの計測結果

無線環境センサでの計測結果の一例を図③-(3)-2-2-2-1、2に示す。図③-(3)-2-2-2-1は、 吹抜け空間廻りの夏期の温度分布のコンタ図で、エスカレータ東西両エリアは空調が効き やすいが、南北エリアは空調が効きにくいこと、空調冷気の下降により下の階ほど冷房が 効いている状況が確認できる。また、空調を1時間停止した前後で温度変化があまりない ことから、空調機の間欠運転や営業終了時の空調機の停止時刻を1時間早めることにより 省エネを図ることが可能である。

図③-(3)-2-2-2-2.2のCO₂濃度分布のコンタ図では、人の出入りの多い夕方の時間帯にCO₂ 濃度が上昇しているがその他の時間では平均 450ppm 程度と低いため外気取入ダクトにダ ンパを設置し取入外気量を削減することにより省エネを図ることが有効である。

図③-(3)-2-2-2-2.2 吹抜け空間廻りの CO2 濃度分布

③-(3)-2-2-3 省エネ効果試算

空調機の運転時間の変更と取入外気量の削減の2項目の省エネ量を夏期8月の1ヶ月間 に関して試算した結果を表③-(3)-2-2-3.1 に示す。取入外気量の削減の効果が大きく、夏期 だけであるが合計では17.7%の省エネとなっている。なお、基準とした8月の空調機の運 転状況を図③-(3)-2-2-3.1、2 に示す。冷水熱量は外気条件等で変化するが空調機の電力消 費量は運転時間の比例する形となっている。

省工ネ項目	電力削減量 [kWh]	削減率 [%]	備考
1.空調機の運転時間の削減	2,812	7.5%	空調機の1時間早めに停止
2.取入外気量の削減	3,860	10.3%	取入外気量を50%削減
合 計	6,672	17.7%	

表③-(3)-2-2-3.1 省エネ効果試算結果

③-(3)-2-3 都心型大規模量販店での実証実験

都心型大規模量販店にグリーンセンサネットワークシステムを構築し、無線通信の状態 を検証するとともに、室内環境実態を把握し、空調に関して10%以上の省エネ効果を実現 する手法を提案することを目的とする。本実証実験の主たる目標は室内環境の見える化シ ステム(詳細は後述)による温度ムラやムダを早期発見し省エネ提案するとともに、1Fから の外気侵入状況の把握、夜間作業時の温熱環境とナイトパージ制御状況を把握し省エネに つなげることである。

対象とする建物は、地上9階、地下6階、延床面積約64,000 ㎡で、物販店舗、飲食店舗 等で構成される。空調設備として熱源機器はターボ冷凍機2台、冷却塔2台、空冷ヒート ポンプチラー3台、冷水ポンプ、冷温水ポンプ、冷却水ポンプで構成され、物販店舗エリ アには各階に12~17台設置された冷房専用の空調機により空調が行われる。対象建物の年 間のエネルギー使用状況を図③-(3)-2-3.1、2に示す。対象建物は、全電化建物で冬期も冷 水負荷がある建物である。

③-(3)-2-3-1 実証方法

グリーンセンサネットワークシステムの構築に当り、物販店舗の9フロアのうち1F、5F、 7F、9F に無線温湿度センサや赤外線アレーセンサ等を設置し無線ネットワークを構築し、 環境データの収集を行うとともに、1F に 4 台の GCON を設置しクラウドと接続し、イン ターネット上でデータの見える化を行った。ネットワークの構成を図③-(3)-2-3-1.1、2 に、 1F のセンサ等の配置を図③-(3)-2-3-1.3 に、使用したセンサ、受信機等の仕様を表③ -(3)-2-3-1.1 に示す。1F の計測期間は、2013 年 12 月から 2015 年 2 月までの約 1 年である。

図③-(3)-2-3-1.1 ネットワーク構成

図③-(3)-2-3-1.3 1Fのセンサ及び GCON 設置状況

表③-(3)-2-3-1.	1 使用	したセンサ、	受信機、	デー	タ収集装置の	の什様
$\Delta (0) (0) 4 0 1$	1 12/11			/ /		

機器	仕様	台数
無線温湿度センサ	920MHz無線出力、電池駆動	150
無線電流センサ	920MHz無線出力、電池駆動	20
人感アレイセンサ	4×4、AC電源駆動	16
無線CO2センサ	920MHz無線出力、電池駆動	5
無線センサ受信機(アンテナ)	LAN(Ethernet)接続型	10
クラウド接続機器	GCON	4
データ収集装置	収集データ蓄積(BOXコンピュータ)	4
データ収集装置	収集データ蓄積・環境見える化	1

③-(3)-2-3-2 実証結果

③-(3)-2-3-2-1 室内環境の見える化システムによる省エネ提案

室内環境の見える化システムによる省エネ提案の一例を図③-(3)-2-3-2-1.1 に示す。夏期 の昼間の 1F 物販店舗での温度分布を示しているが、出入口付近は室内温度が外気温度近 くまで上昇しており扉からの外気進入が室内環境を悪化させていることが分かる。また、 図の右下の部分に室内温度が低いエリアがあり温度ムラが発生していることが分かる。1F 扉からの外気進入に対しては、外気の給排気量を調整し室内の加圧を保つことにより、室 内環境の改善を図るとともに、扉からの外気負荷を削減することが省エネ上有効である。

室内温度のムラに関しては室内温度の低い場所を検知し、対応する空調機の設定温度を 上げることにより省エネを図ることができる。

図③-(3)-2-3-2-1.1 室内環境の見える化と省エネ提案

③-(3)-2-3-2-2 省エネ対策試験の実施

本建物には、夜間に屋外の冷たい空気を取り入れ建物躯体等を冷却するナイトパージと いう外気冷房システムが導入されていた。しかし、施設担当者へのヒアリングの結果、近 隣の飲食店の臭いが入るためナイトパージは停止中で、店舗内での夜間作業時は換気(空調 機は運転)のみで冷房は停止して運用されていた。そこで、臭いのない 1F のみ外気ダンパ を開けて外気を導入し、エスカレータシャフトを活用し暖気を上昇させ、上部階は外気導 入を停止し排気ファンのみ運転して排気するフロアをまたがった建物全体のナイトパージ 方式を提案し、実施した(図③-(3)-2-3-2-2.1 参照)。

図③-(3)-2-3-2-2.2 に示す室内環境の見える化システムで評価を行った結果、対策前は外気温度 23.9℃に対して、室内温度は 25.0~28.3℃、対策後は外気温度 23.7℃に対して室内 温度は 24.8~28.1℃でほぼ同等の結果であることを確認した。また、近隣からの飲食店の 臭いも侵入していないことも確認した。電力消費量としては、動力の大きい空調機での換 気運転に対して動力の小さい排気ファンのみの運転に変えたため、1 時間当り 76kWh の電 力削減につながり、夜間 11 時間運転、中間期 120 日運転すると、年間で約 10 万 kWh の削 減と試算された。なお、今回の試験は 3 フロアのみであったが、7 フロアまで拡大すると その効果は約 24 万 kWh となる。

図③-(3)-2-3-2-2.1 省エネ対策試験の概要

図③-(3)-2-3-2-2.2 省エネ対策試験前後での室内環境の評価(左:対策前、右:対策後)

③-(3)-2-3-3 省エネ効果試算

ナイトパージでの換気方法の見直しを含めて抽出された省エネ項目と省エネ量を表③ -(3)-2-3-3.1 に示す。空調機の間引き運転が最も効果が大きく削減率の約半分を占めている。 5 つの省エネ項目の合計では、空調に要する電力消費量に対して 13.5%の省エネとなって いる。

劣工之頂日	電力削減量	削減率	備去
自工小項日	[kWh]	[%]	در اللا
1.空調設定温度の緩和	130,509	1.5%	冬期、中間期に設定を2℃アップ
2.1Fの外気進入の抑制	31,519	0.4%	
3.ナイトパージでの換気方法の見直し	239,905	2.7%	7フロアにわたってナイトパージを実施
4.空調機の間引き運転	623,376	7.1%	冬期、中間期に各階の空調機を半数運転
5.取入外気量の削減	156,057	1.8%	取入外気量を夏期のみ4割削減
合 計	1,181,366	13.5%	

表③-(3)-2-3-3.1 省エネ効果試算結果

③-(3)-2-4 大規模商業ビルに適したセンサとネットワークシステム仕様の抽出

③-(3)-2-4-1 センサとネットワークシステム仕様の抽出

3 件の大規模商業ビルでの実証実験の結果、営業時間外の空調機の運転時間、運転方法 の見直しや負荷の少ない中間期の空調機の運転台数の削減、CO₂ 濃度や人員密度に応じた 取入外気量の削減が省エネに有効であることを確認した。また、省エネルギーと快適性の 両立のためには、エネルギーの計測とともに温湿度や CO₂ 濃度といった室内環境の計測が 重要であることが明確になった。これらの結果をもとに、大規模商業ビルでのセンサ仕様 と省エネ手法を整理したものを表③-(3)-2-4-1.1 に示す。大規模商業ビルでの省エネルギー の推進に当っては、電流、温湿度、CO₂、赤外線アレイの各種センサが有効である。

今回、実証実験を行った大規模商業ビルは、1フロアが約4,000 ㎡~20,000 ㎡と広く環 境やエネルギー消費量の見える化を行うには、多数のセンサや無線中継器が必要となって くる。郊外型大規模量販店では、電流に関しては200点の計測を行ったが、空調・換気の 各機器(ファンコイルユニット、ビルマルチエアコン、送風機等)単位まで全て計測を行う と1,000 点を超える計測ポイントとなる。計測ポイントとしては、表③-(3)-2-4-1.2 に示す 程度に絞り込むのが妥当である。下表の基準で郊外型大規模量販店(売場面積40,000 ㎡)に 関して計測ポイントを絞り込むと400 点程度となり、約100 ㎡に1点の設置となる。温湿 度に関しては、都心型大規模量販店の1F店舗では約80 ㎡に1点の設置を行ったが、十分 に室内温熱環境を評価することができた。店舗の種類や間仕切り等にもよるが50~100 ㎡ に1個の設置が妥当である。CO2に関しては、空調機単位あるいは制御単位に合わせて設 置数を決定するのが妥当である。

センサの無線通信仕様においては、低消費電力で長距離通信可能な通信が必要であり、 免許不要周波数帯域では920MHz帯の利用を推奨する。大規模商業施設等ではその通信距 離を越える範囲に多数のセンサ設置が必要となるため、電波到達距離延長のための中継器 に対応した通信仕様が望ましい。無線通信プロトコルについては、センサ種別毎に受信器 や中継器を設置する必要が無いように仕様の標準化が今後の課題である。実際のセンサや 無線機器設置に関しては、壁や分電盤の金属扉等の遮蔽物の有無により受信率が変わるた め、受信強度を確認しながら中継器や受信機の設置個数や位置を決定する必要がある。

計測対象	電力量	温湿度	CO ₂	人検知	表面温度
センサ種類	電流計 (簡易電力値換算)	温湿度センサ	CO₂センサ	赤外線 アレイセンサ	赤外線 アレイセンサ
発電方式	電磁誘導借電型	光発電型	光発電型	光発電型	光発電型
個数	各回路系統ごと 各機器単体ごと	50㎡~100㎡に 1個程度	空調機単位 制御単位	30~40㎡に 1個程度	30~40㎡に 1個程度
配置	動力盤内、機器廻り (屋内、屋外共)	居住域(屋内)	空調機廻り 空調ゾーン(屋内)	天井面(屋内)	壁面(屋内)
通信頻度	1分ごと (短周期計測の 平均値出力)	5~10分ごと	10分ごと	1分ごと	5~10分ごと
デ ー タの 信頼性	高 (デマンドに影響)	中	Т	中	中
省エネ手法	各系統、各機器ごと の負荷パターンを分 析、デマンドレスポン ス制御に活用	室内温度の適正化、外 気冷房等各種省エネ制 御に活用、赤外線アレ イと組合せ制御	外気取入量制御	温湿度センサと組合 せで使用、人を検知 し空調ON-OFFや設 定値の変更制御	温湿度センサと 組合せで使用、 放射環境の改 善、省エネ活用

表③-(3)-2-4-1.1 大規模商業ビルでのセンサ仕様と省エネ手法

空調設備	熱源機器	機器単位(冷凍機、冷却塔、ポンプ等)
	空調機	機器単位(空調機、外調機)
	ファンコイルユニット	系統単位
	ビルマルチエアコン	屋外機単位
	送風機	機器単位(1.5kW以上程度)
給排水	ポンプ類	機器単位(1.5kW以上程度)
衛生設備	冷凍庫·冷蔵庫	系統単位または機器単位(1.5kW以上程度)
	厨房機器	系統単位または機器単位(1.5kW以上程度)
電気設備	照明	系統単位
	コンセント	系統単位

表③-(3)-2-4-1.2 大規模商業ビルでの設備ごとの電流計測ポイントの絞込み

③-(3)-2-4-2 グリーンセンサネットワークシステムの経済性の評価

表③-(3)-2-4-2.1 に示す 30,000 mの大規模商業ビルを想定してグリーンセンサネットワークシステムの経済性の評価を行った。仮にセンサ端末を1台8千円、ネットワーク端末を1台50千円とするとセンサとネットワーク端末の合計で12,800千円、設置工事費やクラウド環境構築費等を加えると初期投資27,000千円(900円/m)程度と見積もられる。省エネ10%(エネルギーコスト削減量24,000千円)を達成できれば、クラウド環境維持費、通信費、コンサルタントフィー等の運用コストを勘案しても、投資回収年数3年以下となり費用対効果の高いシステムになり得る。但し、継続的に省エネルギーを実現していくためには、自動制御システムとの連携が重要である。

表③-(3)-2-4-2.1 大規模商業ビルでの経済性評価の想定建物

・想定建物	用途 : 大規模店舗	延床面積 : 30,000㎡	規模:10階建、1フロア:3,000㎡
年間電力消費:	量 : 12,000MWh/年(全電化)	年間エネルギーコスト	:2.4億円/年(8,000円/㎡・年)
換算熱量:117,	120GJ/年(3,904MJ/㎡・年)	原油換算値 : 3,022kL/	年
・センサ端末 温湿度センサ: CO2センサ:1フ ・ネットワーク端末	50㎡に1個程度→600個 ロアに20個程度→200個 1フロアに8台→80台	電流センサ:100㎡に1	個程度→300個

③-(3)-3 データ分析システムの開発

③-(3)-3-1 開発の目的

大規模商業ビルにおいては、省エネルギーと室内環境の快適性の両立が重要であるが、 一般的には省エネルギーと快適性はトレードオフの関係にある。例えば、室内温度は冷房 時、設定温度を上げれば省エネとなるが、室内温度を上げ過ぎると作業環境が悪化する。 CO₂ 濃度に関して言えば、夏期、冬期の外気取入量の削減は省エネとなるが、削減しすぎ ると CO₂ 濃度は上昇し作業環境が悪化する。省エネルギーと快適性の両立のためには、エ ネルギーの見える化とともに室内環境の見える化が重要となってくる。

従来は、図③-(3)-3-1.1 に示すようにトレンドグラフや市販のコンタ図ソフトにより可視 化を行ってきた。しかし、トレンドグラフでは計測ポイントが膨大となるとどの計測デー タに問題があるのかを抽出するのが難しく、室内環境でのムダ、ムラの早期発見につなが らない。また市販のコンタ図では、どこを可視化いるか分からない、リアルタイムでの可 視化が難しいという課題があった。今回開発した「室内環境の見える化システム」は、施 設管理者の利用を想定し、容易に省エネ室内環境をオンライン、リアルタイムで可視化で きることを目標とした。

図③-(3)-3-1.1 従来の室内環境の可視化手法

③-(3)-3-2 室内環境の見える化システムの特徴

今回開発した「室内環境の見える化システム」では、建物平面図の画像ファイルを貼り 付けた上に、各種センサのアイコンをプロットしてコンタ図を作成するため、容易に温湿 度、CO₂、照度等の室内環境を可視化することができる。

本システムは、施設管理者の利用を想定して施設管理者が容易に室内環境を把握できる ように web 上でリアルタイムに閲覧できるシステムとしている。画面の設定に関しては、 図③-(3)-3-2.1 に示す設定画面を用意しており、センサアイコンを複写、移動することによ り容易に計測位置の変更が可能で、グリーンセンサの追加や移動が簡単という特徴に対し て容易に対応できるシステムとなっている。また中央監視装置との連携も可能であり、省 エネ制御への展開が可能である。

図③-(3)-3-2.1 「室内環境の見える化システム」の設定画面

③-(3)-4 大規模クリーンルームでの GSN システムの構築と実証実験

実験施設の大規模クリーンルームにグリーンセンサネットワークシステムを構築し、実 験装置単位での電力の使用状況や室内環境実態を把握し、10%以上の省エネ効果を実現す る手法を提案することを目的とする。

対象とするクリーンルームは、研究用大規模クリーンルームで、床面積 3,000 ㎡、清浄 度クラス 3、室内温湿度条件 23℃±1℃、45%±5%である。熱源機器は、ターボ冷凍機 2 台、ダブルバンドルターボ冷凍機 1 台、冷専インバータターボ冷凍機 1 台、炉筒煙管ボイ ラ1台、小型貫流ボイラ5 台で構成される。クリーンルームの空調には外調機、ファン付 ドライコイル、ファンフィルターユニット(FFU)が使用されている。対象クリーンルーム を含む建物全体の年間のエネルギー使用状況を図③-(3)-4.1 に示す。建物全体でのエネルギ ー消費原単位は、約 13,000MJ/㎡・年である。

③-(3)-4-1 実証方法

クリーンルーム室内に無線温湿度センサや赤外線アレイセンサ、ユーティリティスペースの実験装置盤に電流センサを設置し、ネットワークシステムを構築した。ネットワーク 構成及び使用したセンサ、受信機等の仕様を図③-(3)-4-1.1、2 に示す。計測期間は、2014 年12月から 2015 年 2 月までの約 2 ヶ月である。

図③-(3)-4-1.1 ネットワーク構成

表③-(3)-4-1.1 使用したセンサ、受信機、データ収集装置の仕様

機器	仕様	台数
無線温湿度センサ	920MHz無線出力、ソーラセル駆動	63
無線電流センサ	920MHz無線出力、電池駆動	65
人感アレイセンサ	16×16、電池駆動	4
無線センサ受信機(温湿度センサ用)	920MHz受信/Wi-Fi接続型、商用電源駆動	16
無線センサ受信機(電流センサ用)	920MHz受信/LAN(Ethernet)接続型、商用電源駆動	6
クラウド接続機器	GCON(人感アレイセンサ受信機実装)	2
データ収集装置	温湿度センサ・電流センサプロトコル変換	8
データ蓄積・表示装置	収集データ蓄積・環境見える化	2

③-(3)-4-2 実証結果

クリーンルーム内の温湿度分布の一例を図③-(3)-4-2.1 に示す。クリーンルーム内の温湿 度は時間的な変動はほとんどなく、図に示すような分布が常時続いている。室内温度に関 しては設計条件 23℃±1℃に対して、20.7~23.9℃で分布しており平均では 22.2℃と若干低 い値となっている。湿度に関しては設計条件 45%±5%に対して 45~55%で分布しており 平均では 49.5%となっており約 5%高い値となっている。

図③-(3)-4-2.1 クリーンルーム内の温湿度分布(左:室内温度、右:湿度)

実験装置の電力消費量の日変動の一例として図③-(3)-4-2.2、3に装置Aと装置Bの変動 を示す。装置Aは週に1回、稼働しているがそれ以外の時間帯は待機状態で稼動する日以 外は停止できる可能性がある。一方装置 B は平日の日中に稼動して電力消費量が若干上 昇している。施設管理者へのヒアリングの結果、このタイプの機器は立上げが短時間でで きるものであれば休日に止められるが、通常は連続運転としているとのことであった。

図③-(3)-4-2.2 装置 A の電力消費量の日変動

図③-(3)-4-2.3 装置 B の電力消費量の日変動

③-(3)-4-3 省エネ効果試算

抽出された省エネ項目と省エネ量を表③-(3)-4-3.1 に示す。設定湿度に関しては冬期の計 測結果より空調機の現状 50%前後で運用されているので 45%に設定を変更、夏期は 5%上 げて 50%で運用した場合の省エネ効果を試算した。実験装置の停止に関しては、2割の実 験装置を停止できることを前提にして試算を行った。2つの省エネ項目の合計では、10.3% の省エネとなっている。

省エネ項目	電力削減量 _[kWh]	削減率 [%]	備考
1.クリーンルーム内の設定湿度の緩和、適正化	419,506	2.3%	夏期50%に設定変更、冬期現状の50%から45%に 変更
2.使用していない実験装置の停止	1,453,746	8.0%	計測対象の実験装置電力消費量の2割削減
合 計	1,873,252	10.3%	

表③-(3)-4-3.1 省エネ効果試算結果

③-(3)-5 まとめ

大規模商業施設、大規模クリーンルームを対象として、4 施設においてグリーンセンサ ネットワークシステムを構築し、無線通信性能等の検証を行った。グリーンセンサで得ら れたデータを活用し、各種省エネ提案を実施し、省エネ効果を試算した結果 10%以上の省 エネ効果(表③-(3)-5.1 参照)を確認した。大規模商業ビルにおいては、省エネと室内環境 の快適性の両立が重要であり、データ分析システムとして「室内環境の見える化システム」 を開発し、室内環境の温湿度や CO₂等の空間的分布の評価や省エネ対策実施前後での環境 評価に活用した。大規模クリーンルームでも温湿度の空間的分布の評価に活用した。

建物	省エネ率 [%]	備考
郊外型大規模量販店	11.4%	年間試算
都心型複合商業ビル	17.7%	夏期の8月1ヶ月での試算、対象は空調
都心型大規模量販店	13.5%	年間試算、対象は空調
大規模クリーンルーム	10.3%	年間試算

表③-(3)-5.1 省エネ試算結果のまとめ

③-(4) スマートファクトリのための(工場・事業場用)グリーンセンサネットワークシ ステムの開発【(株)東光高岳、東京電力(株)】

③-(4)-1 研究開発の背景と目標

<研究開発の背景>

我が国の最終エネルギー消費量の42.6%は産業部門で消費されているが、昭和48年のオ イルショック以降、産業部門におけるエネルギー消費量はほぼ横ばいである一方、省エネ ルギーは飛躍的に進展し、エネルギー消費原単位はおよそ 43.8%縮小している(いずれも 平成24年度実績)。

しかしながら、産業部門(製造業)の中でも素材系業種(紙・パルプ、鉄鋼等)と比較 して電力比率が高い機械系業種においては、工場内の設備数が膨大で、エネルギー管理担 当者の育成の難しさと相俟って、設備の運用管理や省エネルギー活動は困難を窮めてきた。 また、エネルギー管理に必要とされる各種センサやセンサネットワークの構築においても、 多数のセンサの取り付けけには多額の投資が必要となることから、「やりたくてもやれな い」状況となっている。

<研究開発の目標>

こうした背景の下、

○ 生産設備に対するセンシングによるセンサデータの分析手法検討(有効性検証)

○ ユーザ視点によるグリーンセンサ・ネットワークの受容性検証及びスペック検討 の2点を大きな目標として、特に電力比率が高い機械系業種を中心に(9業種15サイト)、 センサネットワークの構築及び検証を実施した。なお、センサデータの分析においては、 可能な範囲で生産実績等の事業活動データを参照し、これまで余り知られることがなかっ たセンサデータと事業活動データの相関分析を実施することで、工程または設備単位にお ける省エネルギー(または電力ピーク抑制)効果10%を目指すこととした。

(3)-(4)-2 主要製造業種における実証

③-(4)-2-1 生産用機械器具製造業(加工・組立等)

③-(4)-2-1-1 電力消費の特徴

生産用機械器具製造業におけるエネルギー消費は、電力 が主たるエネルギーであり、生産設備で消費される電力は 事業所全体の約 59%である(図③-(4)-2-1-1.1)。今回の実 証では、金属加工工程の中で連続する下記の3工程を対象 とし、電力消費と生産活動の関係性を分析し、センサネッ 図③-(4)-2-1-1.1 電力量内訳¹⁾

トワーク構築における課題抽出及び省エネルギーポテンシャルのシミュレーションを実施 した。

- ① 加工工程
- ② 加工後処理工程
- ③ 組立·試験工程

③-(4)-2-1-2 センサネットワークの構築

センサネットワークの構築に当たっては、 最小計測単位となる設備単体の容量が大き いこと、施工時の調査において電波受信率 が低かったこと等から、無線式と市販の計

表③-(4)-2-1-2.1 計測箇所

=九/井	売/共米/	凯进索里	計測点数		
i又1/用	武加致	 辺 佣 谷 里	無線	有線	
加工機械	14台	182 kW	18点	14点	
加工後処理	6台	142 kW	20点	6点	
組立·試験	8台	1,345 kW	17点	8点	
合計	28台	1.669 kW	83	点	

測機器(有線式)との併用とした(表③-(4)-2-1-2.1)。電波受信率が低い理由としては、 構内で使用されるインバータ機器や無線LANとの混信等が考えられる。

③-(4)-2-1-3 実証結果(省エネルギーシミュレーション)

図③-(4)-2-1-3.1 待機電力の抽出

図③-(4)-2-1-3.2 設備毎の原単位比較

生産実績データ等との照合に基づいて、生産時間帯ではないと判断できる電力(待機電力)を削減することにより、約3.5%(図③-(4)-2-1-3.1)、原単位管理による工程の運用変 更や効率の良い設備への生産量シフト等により約28.7%(図③-(4)-2-1-3.2)の省エネルギ ー効果があることが分かり、当該業種におけるセンサネットワーク構築の有効性が明らか となった。

③-(4)-2-2-1 生産用機械器具製造業(熱処理等)

③-(4)-2-2-1 電力消費の特徴

生産用機械器具製造業は、電力が主たるエネルギーであ り、生産設備で消費される電力は事業所全体の約 59%とな っている(図③-(4)-2-2-1.1)。今回は、前項(③-(4)-2-1)

図③-(4)-2-2-1.1 電力量内訳 1)

と異なる工場において、金属製品の加工工程の中から特に電力消費が大きいと考えられる 下記①~③の連続した3工程を対象として電力消費と生産活動の関係性を分析し、省エネ ルギーポテンシャルのシミュレーションを実施した。

- 切削工程
- ② 熱処理工程
- ③ 研磨工程

③-(4)-2-2-2 センサネットワークの構築

最小計測単位となる設備単体の容量 が大きいことから、無線式と市販の計 測機器(有線式)との併用とした。無 線式については、施工時の調査におい て受信率が低かったことから、補助的 に用いることとした(表③-(4)-2-2-2.1)

設備	設備数 設備容量	設備家景	計測点数	
		無線	有線	
切削工程	7台	345 kW	-	7点
熱処理工程	11台	1,513 kW	14点	11点
研磨工程	3台	125 kW	9点	3点
合計	21台	1,983 kW	44	点

に用いることとした(表③-(4)-2-2-2.1)。電波受信率が低い理由としては、構内で使用されるインバータ機器や無線LANとの混信等が考えられる。

③-(4)-2-2-3 実証結果(省エネルギーシミュレーション)

生産実績データ等との照合に基づいて、生産時間帯ではないと判断できる電力(待機電力)を削減(図③-(4)-2-2-3.1)することにより、約14%の省エネルギー効果があることが分かった。また、原単位管理による効率の良い設備への生産量シフトが作業時間短縮に繋がることも判明し(図③-(4)-2-2-3.2)、当該業種におけるセンサネットワークの構築による原単位管理は、省エネルギーの推進等に有効であることが分かった。

③-(4)-2-3 印刷・同関連業(グラビア印刷工程)

③-(4)-2-3-1 電力消費の特徴

印刷業におけるエネルギー消費は、電力が約半分を占 めており、そのうち生産設備が約 53%となっている。 今回の実証では、印刷業(グラビア印刷工程)において、 電力消費と生産活動の関連性を分析し、センサネットワ ーク構築における課題抽出及び省エネルギーポテンシ ャルのシミュレーションを実施した。

図③-(4)-2-3-1.1 電力量内訳 1)

- ① グラビア印刷機
- ② ドライラミネータ
- ③ 付帯設備

③-(4)-2-3-2 センサネットワークの構築

センサネットワークの構築に当たっ ては、最小計測単位となる設備単体の 容量が大きいことから、大部分で市販 の計測機器を用いた。また、無線式に ついては、施工時の調査において電波

表③-(4)-2-3-2.1 計測箇所

売/曲		扒供家具	計測点数		
記又1)用	設加致		無線	有線	
グラビア印刷	2台	186 kW	11点	6点	
ト・ライラミネータ	3台	138 kW	11点	6点	
付帯設備	7台	86 kW	1点	6点	
승計	28台	1.669 kW	41	占	

受信率が低かったことから、有線式のものを主とした(表③-(4)-2-3-2.1)。電波受信率が低い理由としては、構内で使用されるインバータ機器や無線 LAN との混信等が考えられる。

③-(4)-2-3-3 実証結果(省エネルギーシミュレーション)

生産実績データ等との照合に基づいて、生産時間帯ではないと判断できる電力(待機電

カ)を削減することにより、約3.7%(参照:図③-(4)-2-3-3.1)、原単位管理による工程の 運用変更や効率の良い設備への生産量シフトにより約18.9%の省エネルギー効果があるこ とが分かり、当該業種におけるセンサネットワーク構築の有効性が明らかとなった。

③-(4)-2-4 印刷・同関連業(オフセット印刷工程)

③-(4)-2-4-1 電力消費の特徴

印刷業におけるエネルギー消費は、電力が約半分を占 めており、そのうち生産設備が約 53%程度となっている (図③-(4)-2-4-1.1)。今回の実証では、印刷業(オフセッ ト印刷工程)において、電力消費と生産活動の関連性を分 析し、センサネットワーク構築における課題抽出及び省エ ネルギーポテンシャルのシミュレーションを実施した。

図③-(4)-2-4-1.1 電力量内訳¹⁾

③-(4)-2-4-2 センサネットワークの構築

センサネットワークの構築に当たっ ては、最小計測単位となる設備単体の 容量が大きいこと、センサ取り付け場 所付近にデータロガー用の 100V コン セントがないこと、等から、大部分に

表3-6	(4)	-2-4-2.1	計測	傗	所
10	ςт.	/ 2 7 2.1	11123	ш	// 1

司准	迅进灾旱	計測点数		
記(1)用 (1)目	 这佣谷里	無線	有線	
オフセット輪転機	3,321 kW	-	49点	
その他印刷機	169 kW	4点	14点	
付帯設備	164 kW	-	8点	
	3,654 kW	75	点	

テンポラリ型の計測機器(有線式)を用いた(表③-(4)-2-4-2.1)(付近に200V電源はあったものの、工場操業時間帯の停電工事が必要であったことから、無線センサネットワークの構築がほとんどできなかった)。

③-(4)-2-4-3 実証結果(省エネルギーシミュレーション)

生産実績データとの照合に基づいて、生産時間帯ではないと判断できる電力(待機電力)

を削減することにより、約4.3%(図③-(4)-2-4-3.1)、原単位管理による工程の運用変更や 効率の良い機会設備への生産量シフトにより約26.3%(図③-(4)-2-4-3.2)の省エネルギー 効果があることが分かり、当該業種におけるセンサネットワーク構築の有効性が明らかと なった。

③-(4)-2-5 食料品製造業

③-(4)-2-5-1 電力消費の特徴

食料品製造業におけるエネルギー消費は、その多くが 電力となっている。電力消費の中でも大きく「生産設備」 と製造環境を維持する「付帯設備」に分けられ、付帯設 備が全体の約 88%を占めている(図③-(4)-2-5-1.1)。今 回の実証においては、当該業種の主要工程(加熱工程、 冷却工程、付帯設備)における電力消費と生産活動の関 係性を分析し、センサネットワーク構築における課題抽

図③-(4)-2-5-1.1 電力量内訳 1)

出及び省エネルギーポテンシャルのシミュレーションを実施した。

③-(4)-2-5-2 センサネットワークの構築

センサネットワークの構築に当って は、最小計測単位となる設備単体の容 量が大きいことから、無線式と市販の 計測機器(有線式)を併用することと した。無線式の設置に当たっては、事 表③-(4)-2-5-2.1 計測箇所

設備	設備数 設備容量 -	迅进灾旱	計測	」点数	
		無線	有線		
加熱生産機器	23台	343 kW	18点	5点	
冷却生産機器	13台	141 kW	8点	5点	
付帯設備	6台	1 kW	6点	-	
合計	42台	485 kW	42	点	

前に電波状況を確認し、干渉を受けやすい場所には設置しない、無線用受信機を分電盤内 に設置する(無線子機の付近に設置する)等の工夫を行った(表③-(4)-2-5-2.1)。

③-(4)-2-5-3 実証結果(省エネルギーシミュレーション)

生産実績データ等との照合に基づいて、生産時間帯ではないと判断できる電力(待機電

カ)を削減すること(図③-(4)-2-5-3.1)
 により、約28%、一部の製造工程に
 おいては、原単位管理による工程の
 運用変更等により約43%の省エネル
 ギー効果があることが分かり、当該
 業種におけるセンサネットワークの

構築による原単位管理は、省エネルギーの推進に有効であることが分かった(但し、上記 効果の実現には運用(実務)面での検討・調整も必要となる)。

③-(4)-2-6 食料品製造業(乳製品)

③-(4)-2-6-1 電力消費の特徴

食料品製造業(乳製品)は、電力が主たるエネルギーで あり、生産設備で消費される電力は事業所全体の約84%と なっている(図③-(4)-2-6-1.1)。今回の実証においては、 連続する下記①~③の3工程を対象とし、電力消費と生産 活動の関係性を分析し、センサネットワーク構築における 課題抽出及び省エネルギーポテンシャルのシミュレーショ ンを実施した。 付帯 設備 16% 生産 設備 84%

図③-(4)-2-6-1.1 電力量内訳 1)

- ①殺菌工程
- ② 充填工程
- ③ 冷却プロセス(氷蓄熱システム)

③-(4)-2-6-2 センサネットワークの構築

センサネットワークの構築に当たって は、最小計測単位となる設備単体の容量が 大きいことから、大部分に市販の計測機器 を用いた。無線式については、施工時の調 査において電波受信率が低かったことから

表(3))-(4))-2-6-2.1	計測	箇所
\sim			E 1 12 14	

=九/#	凯 /#*#	迅进灾星	計測点数	
起 10月	武加致	 这佣谷里	無線	有線
殺菌機	4台	426 kW	-	4点
充填機	11台	385 kW	-	11点
氷蓄熱冷凍機	10台	921 kW	9点	28点
合計	25台	1,732 kW	52	点

査において電波受信率が低かったことから、有線式のものを主とした(表③-(4)-2-6-2.1)。 電波受信率が低い理由としては、構内で使用されるインバータ機器や無線 LAN との混信 等が考えられる。

③-(4)-2-6-3 実証結果 (デマンド抑制シミュレーション)

冷却プロセスに導入されている氷蓄熱システムの運用改善(図③-(4)-2-6-3.1)や生産シ フト(図③-(4)-2-6-3.2)により、約21%のデマンド抑制効果があることが分かり、当該業 種におけるセンサネットワークの構築及び分析は、デマンド抑制に有効であることが分か った。

③-(4)-2-7 プラスチック製品製造業

③-(4)-2-7-1 電力消費の特徴

プラスチック製品製造業は、電力が主たるエネルギー であり、特にペットボトル成型プロセスは生産に関わる ほぼ全てのエネルギーを電力で賄っている。今回の実証 においては、連続する下記①~②の2工程を対象とし、 電力消費と生産活動の関係性を分析することにより、省 エネルギーポテンシャルのシミュレーションを実施した。図③-(4)-2-7-1.1 電力量内訳¹⁾

① 射出成形工程

⑦ ブロー成形工程

③-(4)-2-7-2 センサネットワークの構築

センサネットワークの構築に当た っては、最小計測単位となる設備単体 の容量が大きいことから、市販の計測 機器(有線式)を用いた。無線式につ

表③-(4)-2-7-2.1 計測箇所

	設備	設備数	設備容量	計測点数		
				無線	有線	
	射出成形工程	16台	692 kW	-	16点	
	ブロー成形工程	16台	918 kW	40点	16点	
	合計	32台	1,610 kW	72	72点	

いては施工時の調査において、使用する無線センサと同じ帯域(2.4GHz)の電波が存在す ること、電波干渉を受けやすいインバータ設備の計測を行うこと、等からデータ収集に支 障が出る可能性があることを踏まえつつ、計測設備全体の半数以上に取り付けけを行った (表③-(4)-2-7-2.1)。

生産実績データ等との照合に基づいて、生産時間帯ではないと判断できる電力(待機電力)を削減(図③-(4)-2-7-3.1)、設備への生産量シフト(図③-(4)-2-7-3.2)により約16.2% の省エネルギー効果があることが分かり、当該業種におけるセンサネットワークの構築に よる原単位管理は、省エネルギーの推進に有効であることが分かった。

③-(4)-2-8 飲食店

③-(4)-2-8-1 電力消費の特徴

飲食店において厨房機器内で消費される電力は店舗全体の 約 30%となっている(図③-(4)-2-8-1.1)。今回の実証におい ては、飲食店における各設備間の関係性を分析し、センサネ ットワーク構築における課題抽出及び省エネルギーポテンシ ャルのシミュレーションを実施した。 付帯 設備 56% 厨房 機器 44%

- ① 厨房機器
- 2 付帯設備

図③-(4)-2-8-1.1 電力量内訳 2)

③-(4)-2-8-2 センサネットワークの構築

飲食店の設備は、比較的小容量の電気機器が多数 表③-(4)-2-8-2.1 計測箇所

又③-(4)-2-8-2.1 計側固別

設置されていることが特徴で あり、それらが収納されている 分電盤内に多数のブレーカー が設置されている。設備単位の

市盆	設備	設備数	設備容量	計測点数	
店舗				無線	合計
専門店	厨房機器	57台	117 kW	57点	ᅇᆂ
(3店舗)	付帯設備	32台	55 kW	32点	09 出
レストラン	厨房機器	111台	141kW	111点	142 占
(2店舗)	付帯設備	32台	63kW	32点	143点

計測に当たっては、1 つの分電盤内に多数のセンサを設置する事となるが、小型無線式を 用いることで、配線工事の負荷低減(高い施工性)と狭小分電盤への設置が可能であった (表③-(4)-2-8-2.1)。

事務所エリア不在時の空調負荷の削減(図③-(4)-2-8-3.1)や、同規模店舗での厨房設備 (グリル等)の運転状態比較(ベンチマーク管理)により、約23%の省エネルギー効果が あることが分かった。また、短い粒度で電力消費状況を分析することにより、店舗や作業 者単位のオペレーション比較を行うことができる(図③-(4)-2-8-3.2)。それにより、機器 設定の相違、作業者のルール遵守状況、品質管等のオペレーション状況のチェックに活用 することが出来ることも分かり、当該業種におけるセンサネットワークの構築による原単 位管理は、省エネルギーの推進等に有効であることが分かった。

③-(4)-2-9 輸送用機械器具製造

③-(4)-2-9-1 電力消費の特徴

輸送用機械器具製造業における工場全体の電力使用量 のうち、生産設備で消費される電力は全体の約70%程度 である(図③-(4)-2-9-1.1)。今回の実証においては、射 出成形工程の中で連続する下記の①~③の3工程を対象 とし、電力消費と生産活動の関係性を分析し、センサネ

図③-(4)-2-9-1.1 電力量内訳 1)

ットワーク構築における課題抽出及び省エネルギーポテンシャルのシミュレーションを実施した。

- ① 射出成形工程
- ② 反応射出成形工程
- ③ その他

③-(4)-2-9-2 センサネットワークの構築

センサネットワークの構築に当たっ ては、最小計測単位である設備単体の 容量が大きいことから、大部分で市販

表③-(4)-2-9-2.1 計測箇所

設備	設備数	讥供应旦	計測点数		
		 辺 佣 谷 里	無線	有線	
射出成形機	4台	504 kW	7点	14点	
反応射出成形	4台	854 kW	-	27点	
その他	6台	150 kW	-	7点	
合計	14台	1,508 kW	55	<u></u> ī点	
の計測機器(有線式)を用いた。無線式については、施工時の調査において電波受信率が低かったことから、有線式のものを主とした(表③-(4)-2-9-2.1)。電波受信率が低い理由としては、工場内で使用されているインバータ機器や無線LANとの混信等が考えられる。

③-(4)-2-9-3 実証結果(省エネルギーシミュレーション)

生産実績データ等との照合に基づいて、生産時間帯ではないと判断できる電力(待機電力)を削減すること(図③-(4)-2-9-3.1)により、約22.5%、大型機器が設置されている工程における生産シフト(片寄せによる一部設備の停止等)により、約46.2%(図③-(4)-2-9-3.2)の省エネルギー効果があることが分かり、当該業種におけるセンサネットワークの構築による原単位管理は、省エネルギーの推進に有効であることが分かった。

③-(4)-2-10 プラスチック製品製造業

③-(4)-2-10-1 電力消費の特徴

プラスチック製品製造業は、電力が主たるエネルギーであ り、生産設備で消費される電力は事業所全体の約75%となっ ている(図③-(4)-2-10-1.1)。今回の実証においては、特に電 力消費が大きいと考えられる下記①~③の2工程を対象とし て、電力消費と生産活動の関係性を分析し、省エネルギーポ テンシャルのシミュレーションを実施した。

図③-(4)-2-10-1.1 電力量内訳¹⁾

- ① 粉砕工程
- ② 押出工程

図③-(4)-2-9-3.2 設備毎の原単位比較

③-(4)-2-10-2 センサネットワークの構築

計測対象設備が広い範囲で点在して いたため、大部分で市販のテンポラリ 型計測機器(有線式)を用いた。無線 式(自己給電型)については大容量設

表③-(4)-2-10-2.1 計測箇所					
設備	乳供粉 乳供 索具	計測	点数		
記文 1/用	武順		無線	有線	
粉砕工程	11台	575 kW	-	11点	
押出工程	2台	649 kW	4点	8点	
合計	13台	1,224 kW	23	点	

備に設置したが、(自己給電型であることから)軽負荷時の計測が難しいケースを想定し、 有線式も併用することで計測信頼度を確保した(表③-(4)-2-10-2.1)。

③-(4)-2-10-3 実証結果(省エネルギーシミュレーション)

図③-(4)-2-10-3.1 待機電力の抽出

図③-(4)-2-10-3.2 設備毎の原単位比較

生産実績データ等との照合に基づいて、生産時間帯ではないと判断できる電力(待機電力)を削減することにより、約12%(図③-(4)-2-10-3.1)、原単位管理による工程の運用変 更や効率の良い設備への生産量シフトにより約20%程度の省エネルギーポテンシャルがあ ることが分かり、当該業種におけるセンサネットワークの構築による原単位管理は、省エ ネルギーの推進に有効であることが分かった。

③-(4)-2-11 電気機械器具製造業

③-(4)-2-11--1 電力消費の特徴

電気機械器具製造業におけるエネルギー消費は電力が 主たるエネルギーとなっており、そのうち、生産設備で 消費される電力は事業所全体の約 59%となっている(図 ③-(4)-2-11-1.1)。今回の実証においては、主に以下の① ~②の2工程を対象として、電力消費と生産活動の関係 性を分析し、省エネルギーポテンシャルのシミュレーシ ョンを実施した。

図③-(4)-2-11-1.1 電力量内訳

① 組立工程

③-(4)-2-11-2 センサネットワークの構築

センサネットワークの構築に当た っては、塗装乾燥工程内で使われて いる可動式(回転式)乾燥装置にお いて、無線式の利点を生かし、稼働 台車単位の計測を可能とした。一方、 とし、有線式による計測とした。

売店	売/#	-□/#₩	迅准应早	計測	点数
記知	Ħ	 赵佣奴	 辺 佣 谷 里	無線	有線
組立コ	程	3台	504 kW	I	25点
乾燥コ	程	23台	854 kW	15点	3点
その	他	6台	150 kW	-	6点
合言	ŀ	32台	1,508 kW	49	点

表③-(4)-2-11-2 計測箇所

台車単位の計測を可能とした。一方、他の設備については、計測信頼度を優先させること とし、 有線式による計測とした

③-(4)-2-11-3 実証結果(省エネルギーシミュレーション)

生産設備の運用変更(例:生産時間内は絶えず稼働し続けている乾燥装置について、製品投入の有無を赤外線センサ等で検知し、動作を停止する等)を行うことで、約40%(図 ③-(4)-2-11-3.1)、原単位管理による工程の運用変更や効率の良い設備への生産量シフト(図 ③-(4)-2-11-3.2)により、約27%程度の省エネルギーポテンシャルがあることが分かり、当該業種におけるセンサネットワークの構築による原単位管理は、省エネルギーの推進に有効であることが分かった。

③−(4)−3 ファクトリ向け電流センサおよびセンサネットワークの構築

③-(4)-3-1 センサ端末・システム構成の調査結果

主要製造工場9業種15サイトでのエネルギー(電流)計測を、G社製の「無線クランプ メータ」で実施した。無線クランプメータの仕様を以下に示す。

項	〔 目	仕様	
	СТ	クランプ型 CT	
計測部	電流	80A、130A	
	計測性能	誤差±5%	
母子	方式	ボタン電池	
电你	寿命	2 年間	
	無線方式	特定小電力:2.4GHz	
通信	通信間隔	1分間隔	
	通信距離	5m程度(金属箱内に設置)	
サイズ(無線部のみ)	$22 \times 15 \times 18$ m m	

表③-(4)-3-1.1 無線クランプメータ仕様

安価で簡便に設置可能なセンサネットワークを構築する上で、重要な検討要素となる、 電流計測・電源供給・通信方法・センサ数・作業性・保守性・コストについて、調査結果 を以下に示す。

③-(4)-3-1-1 電流計測

各調査工場で計測対象としたブレーカ容量と計測点数を下表に示す。

ブレーカ容量	設置数
10	44
15	5
20	123
30	79
40	5
50	36
60	18
75	8
100	39

表③-(4)-3-1-1.1	ブレーカ容量と計測	点数
		111 221

ブレーカ容量	設置数
125	17
150	42
200	14
225	59
300	19
400	46
500	10
600	25
800 以上	13

本調査で使用した「無線クランプメータ」の電流計測仕様は 80A、130A であり、仕様以 上の大電流の計測に関しては、他の計測器を使用して実施した。本調査から工場での計測 では大電流用のセンサが必要となることが把握できた。

③-(4)-3-1-2 電源供給

各調査工場でセンサ設置した分電盤では、分電盤内に商用電源が用意されていた箇所は 2工場のみ、しかも一部の分電盤のみと非常に少なく、センサ用の電源確保は困難である。

調査で使用した「無線クランプメータ」は、電池駆動であったので、設置場所の制限を 受けることなく対応できた。このことから工場向けセンサでは、自立電源が有効であるこ とが把握できた。

③-(4)-3-1-3 通信方法

センサの計測結果を収集する通信として今回の調査では無線を活用した。

無線を活用することで、センサ設置を安全で簡便に完了することができ有効性を把握で きた。

しかし、工場内の通信では、データ収集の失敗が多く見られた。今回使用した「無線ク ランプメータ」の無線周波数は 2.4GHz 帯であり、工場内における 2.4GHz 帯の電波状況を 下図で示す。

図③-(4)-3-1-3.1a 2.4GHz帯の電波状況

参考に 900MHz 帯の電波状況も調査した。この 900MHz 帯はほとんど電波が使用されて いないのに対して、2.4GHz 帯は多くの電波が使用されているのがわかる。

この周波数帯は無線 LAN など、他のシステムでも活用されているケースが多く、また「無線クランプメータ」には通信衝突を防ぐような機能がなく、混信等によるデータ収集 失敗が多く発生していることと考えられる。

また、上記の周波数帯は、直進性が強いこともあり、工場の分電盤内に設置したセンサ から出力した電波が分電盤外の受信器と通信できる確率は非常に少なかった。結果として 分電盤ごとに受信器を用意(分電盤内に設置)する結果となり、システム構成としては、 大規模化の傾向となってしまった。

図③-(4)-3-1-3.1b 900MHz帯の電波状況

今回の調査から、工場でのセンサ設置では無線有効性は確認できたが、通信成功率を向 上させる機能付加および周波数帯の検討が必要であると把握できた。

③-(4)-3-1-4 センサ数

各調査工場で設置したセンサ数は、一般機械工場で最大 83 個、プラスチック製品工場で 72 個、食料品工場で 42 個、飲料品工場で 352 個という結果が得られた。

本調査から工場内のエリアネットワークとしては、親機1台に対してのセンサ数は、100 個程度まで必要なことが把握できた。

③-(4)-3-1-5 作業性、保守性

調査した 15 サイトでの作業において、今回採用した「無線通信」、「電池方式」は安 全で簡便にセンサの設置が行え、工事する上で非常に有効であることが把握できた。

有線での通信路と電源供給を実現すると、通信経路の検討・確保(工事)に多くの作業 が必要になる。特に電源工事においては、停電が必要となり、既設工場への導入の障害に もなり得る。

③-(4)-3-1-6 コスト

調査で使用した「無線通信」・「電池方式」のセンサでシステムを構築した場合と、 仮に「有線通信」・「商用電源」にてシステムを構築した場合とを、同じ現場で両ケース (システム)の材料費・工事費を見積りした結果、「有線通信」・「商用電源」に比べ「無 線通信」・「電池方式」の方が5分の1になることが把握できた。

③-(4)-4 グリーンセンサ・ネットワークシステムの構築およびフィールド検証

主要製造工場 9 業種 15 サイトでの実態調査結果を受け、ファクトリ向けセンサとしての課題抽出および仕様検討し、試作品による実フィールドによる妥当性確認を実施する。

③-(4)-4-1 実態調査におけるセンサの課題

実態調査で使用した「無線通信」・「電池方式」の電流センサは、設置工事の作業性お よびコスト面で大きな効果があることが把握できた。

今回の実態調査で使用したセンサを、更にファクトリ向けとして適応するための課題と 電流センサの試作に向けた検討結果を以下に示す。

③-(4)-4-1-1 電流仕様

a. 大電流計測

実態調査で使用した無線クランプメータは、最大 130A までの計測器であったため、 130A 以上の計測箇所では、他の計測器を用いて調査を実施した。調査した工場で 130A 以上の計測ポイントは 38%以上あり、工場での計測では、150A 以上の計測可能なセン サが必要となる。

b. ケーブル径の考慮

実際の工場では、消費電力(電流)とブレーカやケーブル等の設備に乖離があること がわかった。

工場においては設備拡張等を考慮し、使用する電力(電流)よりも余裕を持ったブレ ーカやケーブル等が設置されている。よって電流計測仕様の検討においては、電流値だ けではなくケーブル径も考慮する必要がある。

c. 仕様検討

ファクトリ向け電流センサの試作で活用する計測部については、製作の実現性および コストを考慮し市販品の CT を活用することする。市販品 CT (分割・クランプ型)の計 測電流の調査結果を以下に示す。

30A、60A、100A、200A、400A、600A(M 社)

15A、80A、120A、200A、300A、500A(U社)

また、設置可能なケーブル経は、 ϕ 6mm、 ϕ 10mm、 ϕ 16mm、 ϕ 24mm、 ϕ 36mm となる。

試作にあたり CT 選定は、コスト・入手性を考慮し、M 社製の CT を活用することに した。試作する電流センサの電流仕様として、30A(φ6mm)、60A(φ10mm)、100A (φ16mm)、600A(φ36mm)の4タイプとする。

計測性能としては、フルスケールでの誤差率±2%以下の仕様とする。

③-(4)-4-1-2 無線仕様

a. 周波数帯

分電盤にセンサを設置し、分電盤外に設置する受信器と通信することを考慮して、回 り込み等の効果が期待できる周波数帯の使用が必要である。

実態調査で使用した 2.4GHz 帯無線機と、今後センサネットワーク用途での使用が注 目されている 920MHz 帯の無線機とを、金属箱に入れて通信距離検証した結果、2.4GHz 無線が 5m 程度だったのに比べ 920MHz 無線は 130m 以上で約 25 倍以上であることが確 認できた。

図③-(4)-4-1-2.1 金属箱内から通信距離測定 試験方法

図③-(4)-4-1-2.2 金属箱内から通信距離測定 試験風景

b. 仕様検討

ファクトリ向け電流センサ試作での無線部仕様としては、前項の通信距離の試験結果 と、回折性が高く障害物を回りこんで通信できるという特徴を考慮し、920MHz 周波数 帯の特定小電力無線(ARIB STD-T108 準拠)とする。さらにマルチホップ機能を付加し、 1 台の受信器での通信可能なエリアをより拡大させる。

また、他の無線システムとの電波の衝突をさけるために、キャリアセンス機能を付加 することとする。

③-(4)-4-1-3 電源仕様

今回の実態調査で使用した無線クランプは「電池式」であり、別途電源を用意する必要がないので、設置場所の制限を受けずに自立電源が有効であることが把握できた。しかし、電池式では、電池交換(保守)時期の管理が必要となり、事業化し数多く普及した場合、ユーザまたはセンサ保守者に大きな負担となることが考えられる(課題となる)。このことから、センサ自身での自己給電方式が望ましい。

ファクトリ向け電流センサ試作では、計測用に使用する CT の 2 次側の電力を利用(蓄 電)してセンサ全体を動作させる方式を実装する。

③-(4)-4-2 ファクトリ向け自己給電無線電流センサの試作

主要製造工場での実態調査から、ファクトリ向け仕様の検討結果をもとに、自己給電 型無線式電流計測システム(センサ・中継器・受信機)の試作を行い、機能・性能の妥 当性確認を実施する。

③-(4)-4-2-1 試作仕様

ファクトリ向け自己給電型無線式電流計測システム(センサ・中継器・受信機)の仕 様を以下に示す。

a. 自己給電型無線式電流センサ

表③-(4)-4-2-1.1a 自己給電型無線式電流センサ仕様

	項目	仕様	備考
適用電流 (ケーブル径)		$\begin{array}{cccc} 30A & (\phi \ 6) \\ 100A & (\phi \ 16) \\ \end{array} & \begin{array}{c} 600A & (\phi \ 10) \\ 600A & (\phi \ 36) \\ \end{array}$	クランプ型 CT
計測部	計測性能	誤差±2%以下	フルスケール
	センサ接続数	2CH	シングル、マルチ
	無線方式	特定小電力:920MHz	ARIB STD-T108
	通信間隔	10 秒~600 秒間隔 (設定可能とする)	デフォルト:30秒
通信 通信距離		100m 以上(見通し良い空間) 15m 以上(金属箱内に設置)	
	衝突防止	キャリアセンス	
電源	給電方式	自己給電	計測部の CT より給電
環境	動作温度	$-10^{\circ}\text{C}\sim50^{\circ}\text{C}$	
性能	湿度	30~85%RH	結露なきこと

b. 中継継器

表③-(4)-4-2-1.1b 中継器仕様

	項目	仕 様	備考
無線方式		特定小電力:920MHz	ARIB STD-T108
诵信	中継機能	マルチホップを実現	最大6段
通信 通信距離 衝突防止	100m以上	見通し良い空間	
	衝突防止	キャリアセンス	
電源	給電方式	AC100V、50/60Hz	コンセントタイプ
一般 —	寸法	75mm×50mm× 35mm以下	可能な限り小型化を図る
	重量	70G 以下	可能な限り軽量化を図る

c. 受信機

表③-(4)-4-2-1.1c 受信機仕様

	項目	仕様	備考
無線方式		特定小電力:920MHz	ARIB STD-T108
	通信距離	100m 以上	見通し良い空間
	衝突防止	キャリアセンス	
 通信 接続センサ数 接続中継器 インターフェー イス 	接続センサ数	100 台	最大
	接続中継器	10 台	最大
	インターフェー イス	USB1.0 または 2.0	シリアルデバイスと認識
電源	給電方式	USB 給電(5V)	計測部の CT より給電
<u>ά</u> η,	寸法	20mm×55mm× 9mm以下	可能な限り小型化を図る
加文	重量	10G以下	可能な限り軽量化を図る

- ③-(4)-4-2-2 試作品成果
- a. 自己給電型無線式電流センサ
 - ア. 30A

図③-(4)-4-2-2.1a 30A(シングル、マルチ)

イ. 60A

図③-(4)-4-2-2.1b 60A(シングル、マルチ)

I. 600A

図③-(4)-4-2-2.1c 100A(シングル、マルチ) 図③-(4)4-2-2.1d 600A(シングル、マルチ)

b. 中継器

図③-(4)-4-2-2.2 中継器(正面、裏面)

c. 受信機

図③-(4)-4-2-2.3 受信機

③-(4)-4-2-3 基本機能および性能評価

a. 電流計測性能

封驗計免	入力電流	計測結果[A]		誤差[%]	
时间天对家	[A]	CH1	CH2	CH1	CH2
30A シングル	30.0	29.9		0.33	
30A マルチ	30.0	29.9	29.9	0.33	
60A シングル	60.0	60.0		0.00	
60A マルチ	60.0	59.9	60.0	0.17	0.00
100A シングル	100.0	100.0		0.00	
100A マルチ	100.0	99.8	99.9	0.20	0.10
600A シングル	600.0	599.7		0.05	
600A マルチ	600.0	599.0	600.1	0.16	0.02

表③-(4)-4-2-3.1 電流計測性能

全ての試験対象が±2%以下の誤差であり、仕様を満足していることを確認した。

b. 無線通信機能

③-(4)-4-1-2 の試験方法と同様な試験を実施し、100m 以上の通信が行えることを確認で きた。

③-(4)-4-2-4 実フィールド評価

試作した「ファクトリ向け自己給電型無線式電流計測システム(センサ・中継器・受信機)」に対して、実際の工場で妥当性評価を以下のように実施した。

- ·検証期間 2014年6月12日~10月3日
- ・検証場所 株式会社東光高岳 蓮田事業所 モールド工場

図③-(4)-4-2-4.1 実工場でのセンサ設置状況

a. 電流計測性能

試作した自己給電型無線式電流センサの電流計測性能の評価にあたり、同じ測定ポイント(電気炉)に市販の電力量センサを設置して妥当性評価を実施した。

・電力量センサ 株式会社東光高岳製 型式:STMF-WHM-2

以下に各測定器の計測結果を示す。但し自己給電型無線式電流センサは電流計測結果 から電力換算した結果である。

図③-(4)-4-2-4.2 センサ計測結果

自己給電型無線式電流センサの計測値から電力換算した結果が、電力量センサの計測結 果とほぼ相似していることから、自己給電型無線式電流センサのデータが設備稼働の状況 やエネルギー使用(電力量)の状況把握に適用可能なことが確認できた。

b. 無線通信機能

試作した自己給電型無線式電流センサを、工場内3箇所の分電盤に設置し、同工場内に 設置した親機でのデータ取得結果から、実工場における無線適用の評価を実施した。

センサおよび親機の設置位置関係を下図に示す。

図③-(4)-4-2-4.3 通信(無線)試験状況

ポイント(A、B、C)は全て分電盤(金属製)であり、センサは分電盤内に設置した。 ポイントAの分電盤と受信機とは見通しの良い環境である。ポイントBの分電盤は、 ポイントAとほぼ同距離であるが、受信機との間に生産設備があり、見通しの悪い環 境である。さらに距離と生産設備を増した環境がポイントCとなる。

各センサの設置ポイント(A、B、C)から受信機まで直接通信に成功した受信率を以下に示す。

図③-(4)-4-2-4.4 各設置ポイントからのデータ受信率

各センサは金属製の分電盤内に設置しており、また生産設備や加工品などの移動が無 線では通信障害となり、工場環境では通信状況は刻々と変化することがわかる。 ポイントAの様なセンサと受信機間が見通しの良い環境では安定した通信が可能となるが、ポイントBやCの様な受信機との間に生産設備等がある環境においては、920MHz 周波数帯無線の回り込み等の効果によって通信できる時もあるが、不安定な伝送路であることがわかる。

無線通信としての障害物や、モノ・人の動きなどが多く存在する工場の環境では、センサと受信機間で幾つもの経路を確保する必要性がある。

そこで、受信機とポイントBおよびCのそれぞれから見通しの良い位置に中継器を設置し、検証を実施した。検証結果を以下に示す。

図③-(4)-4-2-4.5 各設置ポイントからのデータ受信率(中継器あり)

全てのポイントにおいて受信率が向上し中継器を用いたマルチホップ機能が有効で あることが確認できた。

実態調査で使用した「無線クランプメータ」では、分電盤内に設置したセンサから分 電盤外の受信機と通信することが困難であったが、試作した「自己給電型無線式電流セ ンサ」では盤内からの通信においても見通しの良い環境であれば、数十mの通信が可能 であり、生産設備等の障害物がある場合においても回り込み効果やマルチホップ機能に より通信が可能なことが把握できた。

回折性が高く障害物を回りこんで通信できる特徴のある 920MHz 周波数帯無線と、マルチホップ機能は、工場向けのセンサネットワークに適していることが確認できた。

③-(4)-4-2-5 試作品の課題および対策

試作した自己給電型無線式電流センサは、CT に流れる電流から給電して駆動しているため、あるレベルの電流が流れなければ計測および通信が行えない。

電流がほとんど流れない状態から、一時的に電力を使うような機器の電流計測では大きな誤差が発生することが、今回の実証で把握することができた。

今回実証では電気乾燥炉がそれにあたる。電気乾燥炉のような炉内温度に応じてヒー ターを ON/OFF して動作をする設備では、通常ほとんど電流が流れず、温度が下がると 一時的にヒーターが ON し電流が流れ、一定の温度に達すると、ヒーターが OFF し電流 が流れなくなるという動作を繰り返す。

市販品のクランプロガー(H社製)で乾燥炉の電流計測した結果を下図に示す。

図③-(4)-4-2-5.1 乾燥炉 クランプロガー計測結果

これに対して、自己給電型無線式電流センサでの計測結果を下図に示す。

上記のように、9時以降のデータに差異が発生している事がわかる。自己給電能力が 負荷の電流変動に追従できない場合、計測性能にまで影響が発生してしまう。

この課題に対して、給電を計測する負荷からだけではなく、分電盤の主幹配線から得 る方式を用いて軽負荷時の電源供給方法について解決するようセンサの改良を実施し た。動作(接続)イメージおよび改良を施した自己給電型無線式電流センサを以下に示 す。

図③-(4)-4-2-5.2 自己給電型無線式電流センサ計測結果

図③-(4)-4-2-5.3 軽負荷時の電源供給方式および改良版

③-(4)-5 グリーンセンサネットワークシステムの構築およびフィールド検証

ファクトリ向けセンサネットワークシステム「自己給電型無線式電流計測システム」を グリーンセンサネットワークシステムとして構築するため GCON との接続を実現した。

③-(4)-5-1 GCON との接続

③-(4)-5-1-1 システム構成

図③-(4)-5-1-1.1 グリーンセンサネットワークシステム構成図

③-(4)-5-1-2 インターフェーイス仕様

GCON と STINCII との接続仕様を以下に示す。

- ・通信メディア:無線 LAN (IEEE 802.11)
- ・アクセス制限:SSID
- ・データ暗号:WEP
- ・ファイル転送:FTP(1分ごとにアップロード)

・データ形式:セブン-イレブン向け GCON フォーマット

③-(4)-5-1-3 フィールド検証

③-(4)-5-1-1項に示したシステム構成をフィールドに設置し検証を実施した。
 期間:2015年1月23日~2月28日
 場所:株式会社東光高岳 蓮田事業所 モールド工場
 設置状況:

図③-(4)-5-1-3.1a GCON 接続検証(フィールド設置状況)

図③-(4)-5-1-3.1b GCON 接続検証状況(クラウド画面)

1 ヶ月以上稼働中は、自己給電型無線式電流センサの情報を問題なくインターネット を介して、クラウド(サーバ)にアップロードすることができ、仕様や運用方法の見直 しをする必要はなくサービス展開できる事が確認できた。

③-(4)-5-2 フレキシブル電流センサの実フィールド検証

グリーンセンサネットワーク・プロジェクトで開発した「フレキシブル電流センサ」 のフィールド検証を実施し、実用に向けて評価する計画であったが、「フレキシブル電 流センサ」は絶縁処理が未対応であり、実環境での検証は短絡事故等のリスクがあるた め、検証時期を改めて検討することにした。

③-(4)-6 省エネ効果

今回、特に電力比率が高い機械系業種を中心とした(9業種15サイト)におけるセンサ ネットワークの構築及びセンサデータの分析を通じ、工程または設備単位における省エネ ルギー効果および電力ピーク抑制効果が10%以上創出できることを確認した。また、今回 の実証結果に元に、センサデータに基づく生産工程の稼動/非稼働(待機電力)を自動判 定するプログラムおよび電力ピークシフトシミュレーションプログラムを試作・構築した。

③-(4)-7 まとめ

今回の結果により、特に機械系業種における省エネルギーの推進において、グリーンセンサネットワークシステムの構築が有効であることを確認することができた。一方、データ分析手法の標準化には更なる実証(ケーススタディ)を積み重ねる必要があること、また、センサネットワークの構築においては、(ユーザの受容性の面で)価格面が最も重要であること等の課題も確認することができた。

③-(4)-8 参考文献

- 株式会社富士経済:産業施設におけるエネルギー消費の実態総調査 2012、株式会社 富士経済 65-255、平成 24-07)
- 2) 株式会社富士経済:エネルギー需要家別マーケット調査要覧 2012、株式会社富士経済 115-127、平成 24-07)

③-(5) スマートファクトリのための(植物工場用)グリーンセンサネットワークシステムの開発【日清紡ホールディングス(株)】

③-(5)-1 研究開発の背景と目標

<研究開発の背景>

製造現場(ファクトリ)における省エネルギー化を最適に進めていくためには、製造装置、空調機器などの装置使用状況やファクトリ内の環境情報を空間的にも時間的にもより きめ細かく把握して制御する必要がある。植物工場は、自然状況によらず安全性の高い野 菜・果物などの農産物を安定して生産できる利点を有するが、現状では光照射量・温湿度 などの投与するエネルギー量と植物育成量との十分な相関が得られていないため、過剰な エネルギーが使用されている。

<研究開発の目的>

本研究開発では、グリーンセンサネットワークシステムを用いた工場内での過剰エネル ギー消費の把握によるエネルギーマネジメントの実証を行う。実証試験では、植物工場に おいて、研究開発項目②-(1)で試作した自立電源モジュールを搭載したセンサ端末の動作 検証を行うとともに、センサ端末をきめ細かく配置し、センサネットワークシステムを用 いてエネルギーマネジメントのためのシステム運用条件の最適化を検討し、10%の省エネ を目指す。

③-(5)-2 実証場所と設備

実証には日清紡ホールディングスの徳島事業所スマートファクトリ内にあるいちごの 植物工場の2部屋を使用した。端末を設置する栽培室とそれに隣接したデータ受信用のPC を設置する管理室のレイアウトを図③-(5)-2.1 に、いちご栽培棚のイメージを図③-(5)-2.2 に示す。

図③-(5)-2.1 栽培室と管理室のレイアウト

図③-(5)-2.2 いちご栽培棚のイメージ

栽培室は本栽培を行う前に栽培条件を検討するためのパイロット実験室で、温湿度、照 明、栄養等などが完全に制御された条件下で栽培を行う完全制御型のものであるが、設定 条件、測定数値等はノウハウであるため実数値の記載は差し控える。栽培室にはスチール 製の植物棚が3台設置されており、2台のエアコンで温度調整、1台の除湿機で湿度調整を 行っている。数10センチの間を開けて隣接している管理室には、端末から送信されたデー タ受信用のノート PC を栽培室側に設置した(スタンドアローンで使用)。

栽培棚は4段になっており縦に片面5本のフレームで支えられているが、各段の中に仕切りは無い。各段の上面には照明器具が取り付けられており、制御盤により昼夜の切替制御を行っている。

③-(5)-3 2次試作機を用いた実証準備

2次試作機(図③-(5)-3.1)を使用しての実証実験を実施した。データの送信間隔は約3 分になるよう調整した。16台の端末を中央の棚の図③-(5)-3.2に示す位置に設置した。設 置場所は植物体のメンテナンス作業の邪魔にならず、照明等の環境に影響を与えない場所 でなければならないため棚の金属製のフレーム部分とした。葉が成長しても陰にならない 様にできるだけ上部に太陽電池面を内側にして耐水性の両面テープで張り付けた。

図③-(5)-3.12次試作機

図③-(5)-3.22次試作機の棚への設置場所

③-(5)-4 2次試作機を用いた動作検証

管理室に設置したデータ受信用 PC に受信機(図③-(5)-4.1)を接続して受信状況の確認 を行ったが、数台の端末のデータしか受信されないことが判明した。栽培室と管理室の構 造について確認してみたところ、それぞれの壁面にはスチールのボードが含まれているこ とが分かり、それが通信の障害になっていると考えられた。周囲における通信の状況を調 べてみたところ栽培室の天井裏部分に受信機を設置すると受信が可能であることが分かり、 長いケーブルを使用して管理室から受信機を伸ばして設置した。全ての端末からのデータ 受信を確認して、そのままシステムを稼働状態にして 20 日間ほどデータの収集を行った。

データを解析したところ、途中で稼働が停止した端末があったり、端末によっては送ら れてくるデータの受信率にバラつきがあったりと、いくつかの問題点も発見された。比較 的受信率の高い端末からの送信データをグラフ化した結果を図③-(5)-4.2 に示す。

図③-(5)-4.1 受信機

図③-(5)-4.2 グラフ化した測定データ

図③-(5)-4.2 から明期には正常にデータが送信さているが、暗期では駆動が停止している ことが明らかになった。また暗期から明期に切り替わった時の再稼働には問題は見られな かった。通常エアコンの On/Off による空調制御のため温湿度が細かく上下するが、データ の送信間隔が長すぎるとその変動が確認されない場合がある。3分の送信間隔で変動がは っきりと確認できたため、送信間隔は3分で十分であると判断した。検証途中で稼働を停 止する端末が何台か出てきた。調査の結果、植物工場内の高湿度環境による影響と考えら れたため、修理の際に全端末の基板表面を防湿材でコートし、データの収集を続けた。修 理後の稼働テストでは湿度が原因と考えられる不具合は見られなくなった。

端末の耐久性が向上したところで再びデータの取得を再開したが、得られたデータを調べてみると、端末によってはデータの受信に欠失のあるものが存在することが分かった。 全端末からのデータを解析して受信率を調べてみたところ、最も良いものでは 99%の受信 率であったが最も悪いものでは58%、平均では84%の受信率しかなかった(表A)。

平均受信率	最高受信率 端末	最低受信率 端末
約84%	約99%	約57%

表③-(5)-4.1 データ受信率

受信率の低い端末からのデータを、受信時刻を横軸に、前回の受信時からの経過時間(受信間隔)を縦軸にしてグラフ化したものを図③-(5)-4.3に示す。

図③-(5)-4.3 データ受信の欠失

図③-(5)-4.3 では、データの受信に欠失が無い場合は、約3分間隔でデータを受信するた め縦軸の3分の所に点がプロットされるが、1回データの受信を欠失した場合は6分の所 に、2回連続してデータの受信を欠失した場合は9分の所と、3分の倍数のところに点がプ ロットされる。3時間ほどの受診データの内、23回の受信の欠失が起こった。データの欠 失については、端末の不具合が原因であることも考えられるが、前述した建物の構造材に よるものと外壁、棚などの金属体に電波が反射して互いに干渉を起こしていることが主な ものであると考えられた。無線出力は現行設定が規準値の上限のためこれ以上上げること ができないことから、構造材による障害はケーブルをさらに長くして受信機を栽培室内に 設置することで改善し、電波の干渉に対しては、干渉が端末と受信機の相対的な位置によ って生じることから2台の受信機でデータを受信し、お互いに欠失部分を補完することで 改善を検討した(図③-(5)-4.4)。

図③-(5)-4.4 栽培室内での2台の受信機の設置

受信機1と受信機2で受信したデータをそれぞれ別々に保存できるようにデータ取込用 プログラムを変更し、受信機それぞれのデータと両方のデータを合わせて重複を取り除い たデータを受信間隔についてグラフ化して比較した。改善の効果が分かりやすい例を図③ -(5)-4.5 に示す。

図③-(5)-4.52台の受信機を使用しての受信率の改善

受信機を栽培室内に設置したことで部屋の外壁に含まれるスチールボードの影響はな くなったが、依然としてデータの欠失が確認された。そこで各受信機で得られたデータを マージすることにより欠失したデータが補われ受信率が改善することが判明した。またこ れにより、データ欠失の原因は端末の不具合というよりは受信環境によるものであること が明らかになった。植物工場での受信率の要求基準に関してこれまでの報告はなく、今回 の実証では 95%以上の受信率を目標とした。3 分間隔のデータ送信の場合、1 日で 480 回 の送信回数となるので 5%では 24 回となり、平均して1時間に1回以下の欠失にまで通信 の安定性を高める必要がある。

③-(5)-5 3次試作機のNMB展での展示

3 次試作機は 2014 年 4 月 23 日~25 日にパシフィコ横浜で開催されたナノ・マイクロ ビジネス展(NMB 展) での展示用デモ端末としても使用した(図③-(5)-5.1)。

図③-(5)-5.13次試作端末(左)と栽培棚を模した展示(右)

展示ブースには、実証場所である植物工場のいちごの栽培棚を模して2段の金属ラック を設置し、上段下段の4隅にセンサ端末を計8台設置した。データは受信機を付けた PC で受け、見える化ソフトでカラーグラデーション表示した(図③-(5)-5.2)。データ送信時 間は20秒に設定し、LED ライトによる照度変化に応じて受信データが変化する様子を示 した。

図③-(5)-5.2 見える化ソフト上での照度表示例

③-(5)-6 3次試作機を用いた実証

3次試作機は、夜間駆動用の蓄電素子を搭載することにより24時間の連続駆動が可能に なったが、本試作から東工大で開発した太陽電池を搭載したため、実際に工場に設置する 前に耐候性(特に耐湿性)の評価実験を行った。植物工場の模擬環境(湿度70~90%)を 密閉容器に再現し、試作機を4台24時間放置した。結果は4台ともセンサ端末としては駆 動していたものの、うち2台の電池パネル内に結露が発生した(図③-(5)-6.1)。

図③-(5)-6.1 高湿度環境下で太陽電池パネル内に発生した結露

これは、パネルの封止法に問題があると考えられたため、東工大でのパネル開発で耐候性の向上策について検討を要することをフィードバックした。

3 次試作機を栽培棚のフレーム上部に設置して実証を開始し、しばらく駆動状況の確認 を行った。2 次試作機での検証により、データ受信の欠失には受信機を2 台使用すること が有効であることが明らかになったため、2 台の受信機でデータを取込んだが、3 次試作機 では2 次試作機に比べてデータの欠失が増加した。調査の結果、端末設置面(棚の金属フ レーム)と電池パネル面が電波透過の障害になる可能性があることが明らかになった。2 次試作機までは本体の側面から電波が抜けていたものが、3 次試作機は厚さが薄くなった ことでアンテナ回路が障害物に挟まれる形になったため電波の発信に支障が生じた可能性 が大きい。設置法を検討して本体の裏側にスペーサーを置き、棚のフレームから少し浮か した形で再設置したが、これでは小型化する意味がないため、データは回路設計にフィー ドバックし、最終試作機での改善を要望した。

多くの端末を設置すると、2 台の受信機で受信しても受信率が悪い端末が出て来る場合 がある。再設置した3次試作機でもそのような端末が現れた。受信機を移動すると他の端 末のデータにも影響が出るため、センサの設置位置を移動することで、どの程度受信率が 改善するかを調査した(図③-(5)-6.2)。

459

図③-(5)-6.2 受信率改善のためのセンサ設置位置検討

初期状態ではセンサ端末は照明に近い、棚のフレーム上部に設置している。この状態から、下へ 3cm、6cm、9cm と設置位置を移動して、それぞれの受信機の受信率、補完した場合の受信率の変化を調べた(図③-(5)-6.3、表③-(5)-6.1)。

図③-(5)-6.3 センサ設置位置の受信率への影響

我動思報		受信率(%)	
作夕美几匹白田	受信機1	受信機2	補完
初期	85.9	59.3	94.1
3cm	84.9	79.5	96.3
6cm	77.2	97.3	98.7
9cm	98.4	99.8	99.8

表③-(5)-6.1 センサ設置位置の受信率への影響

この端末では初期の設置位置で受信機1の受信率が85.9%、受信機2の受信率が59.3%、

両方のデータを補完したデータでも94.1%と目標の95%に達しなかった。端末を3cm下げた場合、受信機1の受信率にはほとんど変化が無かったが、受信機2の受信率が改善され、 補完した結果は96.3%と目標値をクリアした。6cm下げた場合は受信機1の受信率は低下 したが、受信機2の受信率が改善され補完結果は98.7%。9cm下げた場合は両方の受信率 は大きく改善され、補完結果は99.8%で欠失数は1日に1回にまで減少した。以上の結果 から、端末設置位置を数センチ移動させることで受信率が変化し、測定が必要な場所から 大きく端末を動かすことなく通信障害が改善可能であることが明らかになった。

③-(5)-7 最終試作機を用いた実証

3 次試作機までの検証により、植物工場で使用するためのセンサ端末に要求される仕様 が明らかになり、その仕様を盛り込んだ形で最終試作機が作製された。受信機も内部回路 に変更はないが、筐体を小型化して取り扱いやすさと、設置場所選択の自由度を向上させ た。(図③-(5)-7.1)

図③-(5)-7.1 最終試作機端末(左)と小型化した受信機(右)

省エネ効果検証のためのシステム仕様を抽出するため、1つの棚(中央の棚)にきめ細 かくセンサを設置して測定を開始した。棚内のセンサ設置場所を図③-(5)-7.2に示す。

奥側	出入口側				
史制 1 2 2 4 5 6 7 8 9 10 11 12 13 14 15 16 17 15 19 20 17 15 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35	世入口制 41 42 43 44 45 46 47 48 49 55 51 52 53 54 55 55 57 58 59 60 61 62 63 64 65 66 67 66 69 77 71 72 73 74 75				
36 57 38 59 40	76 77 77 77 78 77 79 79 80				

図③-(5)-7.2 最終試作センサの設置場所

設置した端末は合計 80 台で、各段の両面のフレーム上部と下部に満充電の状態で設置 した。フレームの下部も含めて多くのセンサ端末を設置したため、先ずこの状態での受信 安定性を確認した。受信データから受信間隔のグラフを作成し、奥側の面に設置した各端 末の場所に合わせて配置したものを図③-(5)-7.3 に示す。

図③-(5)-7.3 各センサの設置場所における受信間隔

データ受信の欠失は全ての端末において見られるが、時間的及び設置場所による大きな 偏りは無く、受信率を計算してみると全て目標である 95%以上の受信率でデータを安定受 信できることを確認した。裏側の面(入口側面)についても同様の結果であり、また測定 日による大きな違いも見られなかった。

③-(5)-8 省エネ手法

植物工場での省エネ効果を評価する場合、栽培作物の品質改善や収量アップなども効果

としてとらえる手法もあるが、それらは温度・湿度・照度以外にも、養液の温度や濃度、 空気中の CO₂ 濃度にミツバチによる受粉の効率などの数多くの条件の影響を受ける。温 度・湿度・照度のセンサしか搭載していない、本端末では品質に関しては十分な検証を行 うことができないため、本実証では、センサを設置した栽培棚の全ての区画の環境情報を きめ細かく収集し可視化することにより、目的とする栽培条件との差を明らかにした。さ らに得られた環境情報を基に栽培環境を均一化するために空調設備の最適制御条件を検討 した。これにより栽培環境を均一化すると同時に過剰空調制御の改善による消費電力低減 (省エネ効果)についても明らかにした。

③-(5)-9 センサ設置の仕様検討

この実証実験の期間中においては、温度は目的の値になる様に制御されているが、湿度 に関しては室内が結露せずにかつ一定の値以上を常に保つことを目的に制御されていた。 実際のデータの解析であるが、栽培室における生育環境は照明のOn、Offと設定温度によ って大きく暗期(夜)と明期(昼)の2つに分けられる。条件の切替による変動が収まり、 安定制御に移行した段階でそれぞれの場所における温度の平均値を算出した。算出した値 から、棚内の最低値データを基準に温度差で表示した結果を図③-(5)-9.1(暗期)と図③ -(5)-9.2(明期)に示す。

図③-(5)-9.1 暗期での各区画の平均温度差

	明期				奥側面					Х	口側面
	3.55	4.67	4.05	3.34	1.67		2.56	4.35	4.21	3.77	2.61
	2.77	4.19	2.98	2.46	1.43		1.34	3.12	3.04	3.14	2.51
	3.22	4.79	5.22	5.06	2.81		2.29	3.60	4.62	4.20	2.79
	3.28	4.19	4.55	5.21	2.26		1.19	1.39	2.24	3.06	2.11
	3.94	5.57	6.37	6.05	3.47		2.54	4.68	4.29	4.38	2.55
	3.10	3.28	3.36	329	2.51		1.23	1.66	2.27	1.46	1.48
	2.65	4.07	4.32	3.91	2.10		2.34	3.18	3.44	3.37	1.71
	1.06	0.86	0.41	0.29	0.41		0.78	0.36	0.40	0.53	0.00
同じ場所の上部下部の温度差最大3.91℃ 棚全体での温度差最大6.36℃											

図③-(5)-9.2 明期での各区画の平均温度差

図③-(5)-9.1 と図③-(5)-9.2 のいずれも、最小値から最大値にかけて青から赤のグラデー ションで表示している。暗期では、棚内での温度差の最大が 0.96℃、同一区画の上部と下 部の温度差が最大で 0.3℃であり、棚内での場所による温度の違いは非常に小さいという ことが分かった。一方、明期ではそれぞれ 6.36℃と 3.91℃という値を示し、場所による違 いが非常に大きいことが判明した。各区画の上部と下部の温度に差がある原因は上部が照 明器具からの放熱で温められている一方で、下部は植物体の活動が活発になり葉の蒸散作 用等により周りから気化熱を奪っていることが大きいと考えられる。また植物体の成長度 合いによってセンサ端末自体が葉で覆われている所もある。棚内での差は、各段の両端で は棚の外へ熱が逃げやすく、中央部分は熱がこもりやすいなどの構造的な原因と、エアコ ンや除湿機などが作り出す気流が影響しているものと考えられる。

各区画の下部の環境は植物の生命活動の影響が大きく、また植物体が大きく育った場合 には葉に覆われてしまうためこの部分の環境制御は困難である。さらに葉でセンサ端末が 覆われて日陰になった場合には自立電源による発電の障害となる。これらの結果を踏まえ て省エネのための環境制御は、各区画の上部を対象とし、センサ端末の設置場所もフレー ムの上部のみとした。

③-(5)-10 栽培室全区画のセンサ設置と受信率の検証

栽培室にある3つの栽培棚の全区画に110台のセンサ端末を設置した。奥側の棚の最上 段は栽培に使用していないため除外し、全部で11段となり1段当たり両面で10台のセン サ端末をフレームの上部に設置した。受信率を調べたところ全ての棚からの受信率は目標 値とした95%以上であり、平均値は97.9%であった(図③-(5)-10.1)。

図③-(5)-10.1 センサ端末受信率の分布

③-(5)-11 栽培室全区画の環境測定

栽培室の全区画に設置したセンサ端末からのデータを暗期と明期で平均温度の差として表示したものを図に示す(図③-(5)-11.1)。

図③-(5)-11.1 全栽培区画の温度測定結果

暗期では区画による最大温度差が 2.05℃で、明期では 6.03℃であった。暗期では各棚で 右下の区画の温度が高く上段の区画の温度が低いが、これはエアコンの冷気の吹き出し口 に近い上段の温度が低いことに加えて照明制御用の制御盤が棚の右下に取り付けられてい るために、この部分での空気の撹拌がうまく行われていないためだと考えられる。明期に は棚内の中央部分の区画の温度が高いが、これは照明器具からの放熱により各段で温度上 昇が起こり、熱が棚の両端から逃げるためであると考えられる。

③-(5)-12 各栽培棚における環境均一化とエネルギーロスの削減による省エネ効果の検 証

エアコン用の温度センサ及び除湿機用の湿度センサは、栽培室中央の照明制御盤の側面 に取り付けられている。ここの温度を基準に室内の空調が制御されているため、実証の結 果、棚内部の環境と設定温度との間にはズレが生じていることが明らかになった。測定デ ータを検討したところ、明期には棚内部は暖められ設定温度より高くなっているためにエ アコンの設定温度を低くすることが可能であり、湿度についても温度が高い棚の内部は設 定湿度よりも低くなっているため除湿機の設定を高くすることが可能であることが判明し た。これら空調機器の設定調整による環境の均一化を検討し、実エネルギー消費量の改善 を試みた。予備検討の結果から棚内の区画による温度のバラつきに関してはエアコンや除 湿機のルーバーの調製だけでは解消できないことが分かったのでサーキュレータを導入し てその効果を検討した。

空調機器の設定条件を振って効果を検討して結果、明期の温度設定を1度下げ、湿度設定 を10%高くし、サーキュレータ2台を各棚の間の除湿機と反対側に設置(図③-(5)-12.1) することで栽培環境の均一化を達成した。サーキュレータは高さ80cmほどの台に乗せ、 上下左右の首振り設定とした。この結果、エネルギーロスも削減され10%の省エネ効果が 得られた。改善前と改善後の暗期の測定結果を図③-(5)-12.2 に明期の測定結果を図③ -(5)-12.3 に示す。

図③-(5)-12.1 栽培室内でのサーキュレータの設置

図③-(5)-12.2 改善前後の全栽培区画の温度測定結果(暗期)

図③-(5)-12.3 改善前後の全栽培区画の温度測定結果(明期)

暗期では、温度設定も湿度設定も変更しておらず、サーキュレーターによる空気の撹拌 効果だけになるので、それ程大きな変化は見られなかったが、栽培区画による温度差は最 大 2.05℃であったのが 1.02℃になった。明期では、栽培区画による温度差は最大 6.03℃で あったものが 2.68℃と大きく改善された。改善前後の設定温度と測定温度の差の分布(図 ③-(5)-12.4)から、改善前は 4℃以上あった設定温度との差が改善後は 2℃以下になってお り余分な空調のエネルギーが削減されていることを示唆している。

図③-(5)-12.4 設定温度と測定温度の差の分布

図③-(5)-12.5 に示した式により改善後の改善前に対する空調に関するエネルギー使用量 を計算してみると 87.83%となり約 12%の省エネ効果が確認できた。

図③-(5)-12.5 省エネ効率の算出

③-(5)-13 センサ端末耐久性試験

最終試験端末に関しては、実証環境において5ヶ月以上安定して動作しているが(評価 については現在も継続中)、一般的な小型電子部品に対して実施されているのと同様な条 件で信頼性試験を実施した。試験内容と結果を表③-(5)-13.1 にまとめた。
No.	試験項目	試験内容	結果	使用端末
1	低温試験1	作動状態、0℃、2h 放置	異常なし	
2	高温試験1	作動状態、40℃、2h 放置	11	
3	湿度試験1	作動状態、40℃、85%、48h 放置	11	NL 046
4	低温試験 2	停止状態、-20℃、2h 放置	11	No.246 No.247
5	高温試験 2	停止状態、55℃、2h 放置	11	No 248
6	湿度試験 2	停止状態、40℃、93%、48h 放置	11	110.210
7	温湿度	作動状態、25/40℃、90%以上、	11	
	サイクル試験	1 サイクル 24h、2 サイクル		
8	高温加速試験	作動状態、60℃、放置日数80日	11	No 125 158 160
		(2年6ヶ月相当)		110.125,158,109
9	振動試験	5~50Hz、7.35m/s、	11	
		毎分 1/2oct、3 方向 1 サイクル		
10	衝擊試験	高さ750mm、自然落下、	11	
		規定姿勢毎回各2回、コンクリー		No.251
		下面		No.252
11	静電気放電試験	150pF、330Ω、気中放電±2kV、	11	No.253
		正負各5回、		
		センサ端末の四隅及び正面(太陽		
		電池パネル)中央		
12	放射無線周波	80MHz~1GHz、変調 1kHz/80%、	11	No 250
	電磁界試験	3V/m		110.250
13	不要電磁	VCCI クラス B:1GHz 以下		
	エミッション試験	主動作(スリープモードなし)	規格内	No.249
		スリープモード		

表③-(5)-13.1 信頼性試験の内容と結果

実施した試験項目に対しては、全て「異常なし」もしくは「規格内」という良好な結果 を得ることができた。1~7 は作動時、及び停止時(保管時)における温湿度環境に対する 耐久試験で、3 台の端末に対して実施した。8 は特に温度に対する加速耐久試験で 3 台の端 末に対して実施した。9~11 は物理的、電気的なショック対する試験で 3 台の端末に対し て実施した。12 は外部からの様々な周波数の電波を浴びた状態で正常に動作するかの試験。 13 は作動時に端末自体から不要な電磁波が外部に放出されていないかの試験である。No.8 の高温加速試験では 80 日の実施で異常は見られなかった。電子部品の耐久性テストにおい ては、温度が 10℃上昇すると加速係数が 2 倍になると考えられており、60℃は常温(25℃) に比べて 35℃高いので、80 日×(2^3.5) ≒905 日≒2.5 年となり約 2 年 6 ヶ月以上の耐久 性があると見積もられる。本実証では最終試作機完成時期の関係から期間内に 80 日程度の 検証しかできなかったが、更に長期の試験を実施し、自立電源の有用性を検証していく予 定である。

③-(5)-14 まとめ

自立電源を搭載した無線センサ端末を使用した実証実験によって 10%の省エネ効果が 確認された。植物工場では生育段階によって細かく環境を制御する必要が生じる。本実証 でエネルギーロスの削減のために設定した空調等の条件もそれに応じて変化させる必要が あり、継続的な環境のモニタリングが必要になる。今後は更に栽培作物の品質や収量等も 視野に入れ、温湿度、照度以外の多くの環境データをビッグデータとして収集解析し、総 合的な省エネを進めてゆく予定である。

④ プロジェクト推進及び研究支援

④-(1)研究会、委員会活動

本プロジェクトの目的・目標達成に向けてプロジェクトの円滑な推進を図るため、進捗 管理・調整、技術的課題の検討・対策、知財の有効的な取得ならびにその成果展開等を目 的として、プロジェクトリーダの下、「グリーンセンサネットワークシステム開発プロジ ェクト推進連絡会」(グリーンセンサ推進連絡会)を開催した。また、推進連絡会のもと、 知的財産権委員会、共通プラットフォーム委員会、実証推進研究会、知識DB編集委員会、 を設置し、当該委員会活動の企画・サポート、プロジェクト参画企業・大学・研究所間の 技術調整、成果・知財の普及、センサ端末・システムの規格化を図った。

また、各テーマの前月までの進捗状況をプロジェクトリーダおよび各研究センター長に 報告し、質疑応答などを含む議論を行う会議として、合同研究会議をほぼ毎月1回実施し た。

④-(1)-1 グリーンセンサ推進連絡会

プロジェクトの目的・目標達成に向け円滑な推進を図るため、参画団体の研究開発責任 者クラスから成る「グリーンセンサ推進連絡会」を開催し、プロジェクト全体の進捗と各 テーマとの相互関連を見える形での整理・調整、世界的な研究開発動向に照らして常時評 価・ベンチマークの実施、産業化に向けた環境整備活動、及び下記委員会の決議事項の承 認等を行った。毎回委員のほぼ全員とオブザーバーとして METI 研究開発課・産業機械課、 NED0 ロボット・機械システム部の出席が得られ活発な意見交換が行われた。開催実績は下 記の通り。

平成 23 年度第 1 回:8 月 30 日@産総研つくば東事業所本館 1 階第一会議室 平成 23 年度第 2 回:1月 19 日@NMEMS イノベーション棟 1 階国際セミナー会議室 平成 24 年度第 1 回:7月 20 日@NMEMS イノベーション棟 1 階国際セミナー会議室 平成 24 年度第 2 回:10月 5 日@東工大大岡山キャンパス グリーンヒルズ 1 号館 1 階 平成 24 年度第 3 回:3月 12 日@NMEMS デクノサロン 平成 25 年度第 1 回:7月 19 日@NMEMS 新テクノサロン 平成 25 年度第 2 回:10月 18 日@NMEMS 新テクノサロン 平成 25 年度第 3 回:1月 20 日@NMEMS 新テクノサロン 平成 25 年度第 4 回:3月 12 日@NMEMS 新テクノサロン 平成 26 年度第 1 回:7月 25 日@NMEMS 新テクノサロン 平成 26 年度第 2 回:10月 10 日@NMEMS 新テクノサロン 平成 26 年度第 2 回:10月 10 日@NMEMS 新テクノサロン 平成 26 年度第 4 回:3 月 11 日@NMEMS 新テクノサロン

④-(1)-2 知的財産権委員会

知財ポリシーの策定、知的財産権の帰属、知的財産の管理・活用について、プロジェク ト全体の目的を達成するための連携を生かした戦略、合理的なルールを確立した。開催実 績は下記の通り。

平成 23 年度第1回:8月29日@産総研つくば東事業所本館1階第一会議室 平成 23 年度第2回:10月4日@NMEMS テクノサロン 平成 24 年度第1回:11月6日@NMEMS テクノサロン 平成 25 年度第1回:8月19日@NMEMS 新テクノサロン 平成 25 年度第2回:11月25日@NMEMS 新テクノサロン

平成 25 年度第3回:1月 20 日@NMEMS 新テクノサロン

④-(1)-3 共通プラットフォーム委員会

実証モデル別ワーキンググループ(WG)での性能、共通プラットフォーム仕様、ビジネス 戦略、技術的標準規格化アイテムを抽出し、プロジェクト全体として俯瞰したビジネス・ 標準化戦略の策定を行った。開催実績は下記の通り。 平成 23 年度第1回:12月5日@NMEMS イノベーション棟1階国際セミナー会議室 平成 23 年度第2回:2月8日@NMEMS イノベーション棟1階国際セミナー会議室 平成24 年度第1回:7月20日@NMEMS イノベーション棟1階国際セミナー会議室 平成24 年度第2回:2月7日@NMEMS テクノサロン 平成25 年度第1回:5月10日@NMEMS デクノサロン 平成25 年度第2回:10月9日@NMEMS 新テクノサロン 平成25 年度第3回:2月26日@NMEMS 新テクノサロン

④-(1)-4 実証推進研究会

25 年度までに策定したセンサ端末共通プラットフォーム仕様の実証及び社会実装をより推進するため、省エネ実証現場の事業者、国内の電気事業者、省エネビジネス事業者等のユーザとヒアリングを行いながら、様々な使用条件下でのプラットフォーム仕様の適合性、センサ端末の市場規模、社会実装により応用展開が期待される機器使用の見える化・ 機器の不具合や非効率等のリモート監視、さらに動き・位置・人数情報等のパーソナル情 報検知によるサービスの可能性について調査を実施した。ヒアリング実績は下記の通り。 平成 26 年度第1回:6月16日@JAXA 筑波宇宙センター 平成 26 年度第 2 回:7月 22 日@東北電力本店

④-(1)-5 知識DB編集委員会

プロジェクト成果、学会調査・発表・投稿論文をデータベース化、さらに、エネルギー 消費(オフィス、ホーム他)に関わるデータの収集を行い、組合メンバー間での情報共有 を図った。開催実績は下記の通り。 平成24年度第1回:2月9日@NMEMS テクノサロン 平成24年度第2回:12月13日@NMEMS テクノサロン

平成 25 年度第1回:4月 26 日@NMEMS テクノサロン

④-(2) 広報普及活動

関係機関との技術交流を積極的に進めるとともに、展示会への出展や種々の講演会・セ ミナーでの成果報告ならびに以下に示すようにホームページ、ブログ、新聞・日経テクノ ロジーオンライン等への掲載、NEDO プレス発表などを通じて本研究開発の普及・広報を 図った。

④-(2)-1 ホームページの開設

社会課題対応センサーシステムのホームページ(<u>http://www.nmems.or.jp/gsnpj</u>/)を開設 し、研究アウトライン(研究開発概要、研究コンセプト、研究テーマ)、研究体制につい て紹介、さらにナノ・マイクロビジネス展、最終成果報告会、セミナー等での展示パネル・ 発表資料を掲載し広報普及を図った。また、ホームページには研究員専用サイトも設け、 センサネットワークシステムの技術動向調査報告、各種事務手続きのマニュアルや通達事 項を掲載し、研究の効率化を図った。

④-(2)-2 ブログによる情報発信

組合員である一般財団法人マイクロマシンセンターが管理するブログニュース(MEMSの波、http://gsnpj.blogspot.jp/)にプロジェクトの進捗状況や海外調査の内容を発信して、 本プロジェクトの広報・普及を図った。

④-(2)-3 新聞・日経テクノロジーオンラインへの掲載

プロジェクト概要および成果報告会の様子が掲載された。掲載先およびタイトルを以下 に示す。

1) 電波新聞: 革新的センサー、NEDO が開発プロジェクト立ち上げ、(2011-10-13)

2) 電波新聞:省エネを推進する革新的技術開発…GSN プロジェクト、(2012-1-5)

3)日経テクノロジーオンライン:見えてきた「バンソウコウ・センサ」、1枚1000円で貼 るだけ、(2013-7-5)

4)日経テクノロジーオンライン:コンビニ改革、電力センサが増収ツールに、セブン-イレ ブンが語る次世代強い店づくり(1)、(2013-8-5)

5)日経テクノロジーオンライン:コンビニ改革、コロッケ揚げる時間帯を変え売上高アッ プ、セブン-イレブンが語る次世代強い店づくり(2)、(2013-8-8)

6)日経テクノロジーオンライン:「1億円のエネルギーで40億円の価値を生めるか」、東 電の節電基準電力会社が進める顧客向け省エネ・コンサルティングとは(上)(2013-8-30)

7)日経テクノロジーオンライン:「生産を減らさず電力ピークシフト」、東電がセンサで 実現電力会社が進める顧客向け省エネ・コンサルティングとは(下)、(2013-9-2)

8) 日経テクノロジーオンライン:貼るだけ 1000 円センサ、実証から実用へ、グリーンセンサ・ネットワーク・プロジェクトを詳説、(2013-9-19)

9) 日経テクノロジーオンライン:太陽電池の"布"、暗い室内光でも発電、貼るだけセン サ向け自立電源を解説、(2013-10-10)

10) 日経テクノロジーオンライン:コンビニや工場をセンサーで見える化、国プロが最終 報告会、(2015-3-2)

④-(2)-4 NED0 プレス発表

プロジェクトの成果のプレス発表を「MEMS センサーネットワークによる 10%の省エネ 効果を実証」 -- グリーン MEMS センサーでスマート社会を実現へ---という内容で説明、 映像によるスマートオフィスおよびスマートコンビニの実証現場の様子、赤外線アレーセ ンサの展示を行った。その結果、様々な Web ニュースでプレスの内容が紹介された。

1.3 目的に照らした達成状況

	①グリーンMEMSセンサの開発			
研究開発項 目	目標	研究開発成果	達成度	課題と解決 方針
①-(1) 電流・磁界 センサの開 発	【基本計画】 (1)面積:2cm×5cm以下	(1) バイアス磁界印加機 構と、電流センサ全体の サイズが電線径に依存し ない貼付型構造を実現す る電流計測技術の開発に 成功した。これにより、 サイズが 2cm×5cm の電 流・磁界センサを実現し た。	0	
	(2)平均消費電力:100μ W以下	(2) フルブリッジ回路や アナログフィルタ回路等 の回路技術とセンサの配 置による自動補正技術、デ ジタル補正等の信号処理 技術により、低消費電力化 に成功し、平均消費電力が 単芯電線用では 88uW、多 芯電線用では 65uW の電 流・磁界センサを実現し た。	Ó	
	【実施計画】 (3)センサ部サイズ 0.4 mm×2 mm×2 mm の 小型磁気センサを開 発。	(3) 磁性材料と微細加工 技術を活用した磁気セン サにおいて、飽和磁界特 性を制御することでセン サ部の小型化を実現し、 センサ部サイズを 0.6mm ×1.5mm×0.5mm にする ことに成功した。	0	
	 (4)電流検出感度:mAから数10A(磁界換算値: pT領域からmT領域)の電流・磁界センサを開発。 	(4) 同期検波やフィルタ 処理等の検出方式と回路 技術により高い S/N 比を 実現し、100pT レベルか ら 1mTの磁界を検出する 技術を開発した。これに より、1mA から 500Aの 幅広いレンジに対応した 設計ができることを確認 した。	0	

	(5)電流・磁界センサ端 末を開発し、実証実験に より、実用レベルである ことを確認。	 (5) 自立電源と無線通信 機能を搭載した電流・磁界センサ端末を開発し、 現場において実証実験を 実施した。その結果 400Lux程度の低照度下で 電流計測と無線によるデータ送信ができることを 確認した。 	0	
①-(2) 塵埃量セン サの開発	【基本計画】 (1)センサ面積:2cm× 5cm以下	 (1)センササイズ 2cm× 5cm×2cm にてセンサを 試作、動作を確認した。 	0	
	(2)平均消費電力:100μ W以下	 (2)トリガー部によるイベントドリブン駆動により、平均消費電力 96μWを達成した。(1sec 動作、1024sec 間隔で試算) 	0	
	(3)精密部品工場におけ る省エネ効果 10%。	(3)イベントドリブン駆動 で塵埃量を測定しその際 の塵埃量に応じて空調の 出力を変化させるシステ ムを提案。これにより、 現在の空調制御システム と比較し約 70%の出力削 減が可能であることを試 算により確認した。	0	
	【実施計画】 (1)クラス 10 万程度、粒 子径 5µm 程度の塵埃 を検出可能にする。	(1)市販塵埃量センサをリ ファレンスとして、クラ ス 5,000 ~ ク ラ ス 2,000,000 での市販センサ と試作センサの相関を得 た。また、粒径 2~5µm で粒径とセンサ出力の強 度との相関を得た。SN 比 から、0.5µm 粒子まで検 出可能であることを確認 した。	Ø	
	(2)トリガー部によるイ ベントドリブン駆動を 達成する。	(2)クリーンルーム内外で の圧力差に相当する 10Pa 以上の圧力変化で起動信 号を発生させるトリガー 部の開発に成功。精密部 品工場内にて部屋の出入 りや付近の人の移動でセ ンサが駆動することを確 認した。	0	

1				
①-(3) CO ₂ 濃度セ ンサの開発	【基本計画】 (1) 面積: 2cm×5cm以下	 (1)ガス吸着部のイオン液体の固体薄膜化、電極部の小型化設計により、センササイズ 1cm×1cm を 作製可能とし、端末サイズ 2cm×5 c m以内を実現した。 	0	
	(2)平均消費電力: 100μW以下	(2)想定アプリケーション より 10 倍頻度が高い計 測(1 分毎に計測)におい てもセンサの消費電力は 約 40μWを確認した。	0	
	【実施計画】 (1)測定範囲 300~3000ppm、使用温 度5~45℃において分解 能±100ppm、誤差± 100ppm の高分解能な CO ₂ 濃度センサの開 発。	測定範囲 300~3000ppm、 使用温度 5~45℃にて、 CO ₂ を特異的に吸着する イオン液体を用いて分解 能±100ppm 、誤 差± 100ppm を有する CO ₂ 濃 度センサを開発した。既 存の CO ₂ センサの 1/8 倍 低い消費電力ながら、分 解能は同等以上を達成し た。	0	
	(2)イオン液体を用いた CO ₂ ガス吸着脱離原理 の解明および吸着・検 出因子の抽出、最適化 の実施。	CO ₂ を特異的に吸着する イオン液体の吸着脱離原 理を仮説検証し、センサ による解明し、ガスの変 化に追従可能なリバーシ ブル(吸着・脱離)が可能な CO ₂ センサを可能とし た。また検出因子の抽出 および最適化により、高 速応答可能な CO ₂ モニタ リングを実現した。	0	
①-(4) VOC 濃度 センサの開 発	【基本計画】 (1)面積:2cm×5cm以下 (2)平均消費電力;100µ W以下 を満たすセンサネット ワーク用 VOC 濃度セ ンサを開発する。	ポリマー共振式 VOC 濃度 センサモジュールと無線 端末(産総研)と有機太陽 電池ユニット(東工大,日 清紡(株))を搭載した、サイ ズ 2cm x 5cm x 3cm,平均 消費電力 36µWで駆動す るセンサネットワーク用 VOC 濃度センサを実現し た。	0	

	【実施計画】 (1)サイズ: 2cm×2cm×1cm以下, (2)検出限界;許容濃度 以下を満たす共振式 VOC 濃度センサをポリ マーを用いて開発す る。	2cmx2cmx0.5cm の共振式 VOC 濃度センサを低環境 負荷、低コストなプロセス を実現するポリマーを用 いて開発。さらに、センサ の高感度化により、微小流 量 100sccm、180 秒でトル エン、オクタン、エタノー ルの許容濃度を検出可能 な VOC 濃度センサの開発 に成功。	0	
	センサを実環境で動作 させ、10%以上の排気量 低減効果を示す。	ネットワーク用 VOC 濃度 センサを作業環境に設置 して実証検証し、センサを 用いた VOC 濃度モニタリ ングにより排気システム の排気量が 50%以上低減 する可能性を提示。	0	
①-(5) 赤外線アレ ーセンサの 開発	【基本計画】 (1)サイズ: 2cm×5cm 以下	(1)ウェハレベル真空封止 によりサーモパイル型赤 外線センサ素子を小型・ 高感度化。更に、レン ズ・センサチップ、およ び処理回路の積層によ り、サイズ 2cm×5cm を 実現。	0	
	(2)平均消費電力; 100μW以下	 (2)サーモパイル赤外線センサ素子の高速応答化により、 温度データ取得時間を短縮。 更に、モジュールの間欠動作・可変フレームレート機能の搭載により、1回/分測定にて平均消費電力95uWを達成。 	0	
	【実施計画】 (1)画素数: 256 (≒16×16) (2)応答速度: 10fps 以上	(1)・(2)対象物から放射さ れた赤外線を高効率に集 光、且つ高速に放熱する 赤外線センサ素子の構造 設計により、感度と高速 応答性を両立。256 画素 (≒16×16)で、センサ 素子の応答速度 19fps を 実現。	0	

②無	②無線通信機能及び自立電源機能と搭載したグリーンセンサ端末の開発			
研究開発項 目	目 標	研究開発成果	達成度	課題と解決 方針
 ②-(1) 超小型高効率ナノー構築 イズ電・自熱 源の開発 	【基本計画】 室内照明下、平均出力 150µW以上の発電・蓄 電一体型電源モジュー ルの開発。 端末サイズ2×5cm以下 に対応。	【基本計画】 室内照明に適した有機半 導体と電荷輸送ロスの低 減に有効なナノファイバ 一構造の利用により室内 の低照度環境下で2× 5cmのサイズで、150µW 以上の出力を達成。 40℃、RH95%で2年以上 の耐久性。実証環境下で6 カ月以上の安定動作(評 価継続中)。	0	
	【実施計画】 室内光を効率的に利用 できる有機半導体製造 技術の開発。	【実施計画】 新規有機半導体の開発に より室内光全体の利用と 1V 以上の開放電圧を達 成。スケールアップ合成 技術も確立。	0	
	室内照明下での高出力 化を可能にするナノフ ァイバー構造化技術の 開発。	有機半導体ナノファイバ ー構造の利用による電荷 輸送ロスの低減により出 力目標を達成。	0	
	フレキシブル化を可能 にする太陽電池繊維 化・布帛化技術の開発。	有機薄膜太陽電池の繊維 化・布帛化技術の確立によ りこれまでにないフレキ シブル化を実現。	0	
	端末への安定電力供給 を可能にする発電・蓄電 一体型電源モジュール の開発。	蓄電機能を備えた電源回 路技術を開発により 照度 2001x でも動作可能な 完全無給電化自立電源を 開発。実証環境(植物工 場)の昼夜間 24 時間連続 動作や高湿度環境(相対 湿度 90%)にも対応。	0	
	電源小型化のためのモ ジュール製造技術の開 発。	基板抵抗低減と開口率向 上により小型化を実現。	0	2015年12月 まで布帛型 の耐久性に ついては有
	長期安定動作のための 封止技術の開発 。	パネル型は 2 年以上の耐 久性を確認。 布帛型は耐久性評価を継 続中(~2015年12月)	△ (2015 年12 月)	、機イ型の用な機ツルで、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、

②-(2) 超小型高効 率屋内用自 立電源シス テムの開発	【基本計画】 (1)面積:2cm×5cm以下 (2)平均出力:150µW以 上の電力供給が可能な 発電・蓄電一体型モジ ュールを開発。	【基本計画】 面積が2cm×5cmで150μ W以上の電力供給が可能 となる4直DSCモジュー ル(発電量196μW)と EDLCで構成される発 電・蓄電一体型モジュール を開発。	(1)(2) O	
	【実施計画】 (1)室内照明下で平均出 力が 150µW 以上とな る 2cm×5cm 以下の面 積の自立電源を開発す る。	【実施計画】 (1)蛍光灯 500 ルクス下に おいて、1.8V 出力型で 166.1 µ W3V 出力型で 150.7 µ W となる自立電 源を開発(他社比約2倍 の高出力)。	Ø	
	(2)上記の自立電源で駆 動するグリーンセンサ (赤外線アレーセンサ) 搭載の無線センサネッ トワーク端末 (GSN 端 末)を開発し、スマート オフィス実証を協働し て進める。	(2)中小スマートオフィス 実証(省エネ 10%以上) 用に赤外線アレーセンサ 搭載の自立電源駆動 GSN 端末と GCON 用受信機を 開発した。 また、以下のグリーンセン サ実証用に、自立電源を開 発・電流・磁界センサ(1.8V 型/3V型)・塵埃量センサ (1.8V型/3V型)・CO ₂ 濃 度センサ(3V型)・CO ₂ 濃 度センサ(3V型)・CO ₂ 濃 度センサ(3V型)・CO ₂ 濃 度センサ(3V型)更に、 フレキシブル無線センサ ネットワーク端末評価用 に 3V 出力型自立電源、エ ナジーマネージメントLSI 評価用に 4 直 DSC モジュ ールを開発。	0	
②-(3) フレキシブ ルクランプ センサの開 発	【基本計画】 大きさ 2cm×5cm 以下の フレキシブルセンサ	400巻き以上のコイルを備 えた、2cm×5cm×100µmの フィルム型フレキシブル 電流センサの製造プロセ スを確立し、実際にセンサ を試作した。	0	
	【実施計画】 検出効率 3V/30A	センサ単体では出力は 200mV/30A。一方、セン サを複数個接続すると出 力電流や電圧は比例的に 増加することを実験から 確認。センサを15個直列 接続とすることで達成。 なお、センサを15個重ね 合わせても、サイズの従来品 の1/5。フレキシブル性も 維持。	0	

 ②-(4) グリーンセンサ端末・システム超低消費 化技術の開発 	【基本計画】 MEMS センサからの信 号を収集・処理する機 能機能を備えた 3mm 角の端末本体部チップ を開発。	 (1) 微小な環境発電エネ ルギーを高効率に利用す る端末エネルギーマネジ メントアルゴリズムをハ ードウェア実装した端末 用 LSI (1.2×3.0 mm)を 開発し、自立電源の高効 率化と端末起動時間の短 縮効果を確認した。 	0	
		(2) 低電力化により不足 する精度を補償するデジ タル補正アルゴリズムを ハードウェア実装した端 末用 LSI (2.5 × 3.0 mm) を開発し、低電力性能を 確認した。	0	
	【実施計画】 (1) 端末起動時間を、従 来技術比で 1/100 以下 に低減。	 (1) 照明光において、端末 起動時間を、従来技術比 (市販 LSI) で約 1/150 以 下に低減を達成。 	0	
	 (2) 起動から変換完了 まで、0.5 msec 以下の 時間で、10bit 以上のア ナログデジタル変換。 	 (2) 起動から変換完了まで、約 0.08 msec の時間で、14 bit の分解能、約 13 bit の測定精度でアナログデジタル変換を達成した。 	0	
②-(5)グリーンセンサ端末機能集積化技術の開発	【基本計画】 MEMS センサからの 信号を収集・処理する 機能、及び計測データ を無線で通信する機能 を備えた 3mm 角の端 末本体部チップ(集積 化モジュール)を開発。	センサ信号処理・無線 通信用カスタム LSI とキ ャパシタ埋込み型 Si-イ ンターポーザー(実装基 板)とチップ to ウェハ (C2W)接合実装プロセス を開発し、3mm 角の端末 本体部チップ(集積化モ ジュール)として実証し た。	0	
2-(5)-2 ウェハレベ ルフレキシ ブル集積化 技術の開発	【実施計画】 外形寸法 2×5cm の共 通プラットフォームを 構築。	グリーンセンサ用共通 プラットフォームを設計 し、2×5cm 寸法への実装 に反映。各グリーンセン サに対して、センサ信号 処理回路、無線回路、自 立電源の開発目標値との 整合をとり、最大公約数 としての仕様値がセンサ	0	

		端末全体の開発目標値を 満足するように調整し た。		
	センサ/IC を 3 種搭載 した 3mm 角の集積化 モジュールを開発。	信号処理無線通信用カ スタム LSI を開発し、当 LSI と水晶振動子と R/C 部品からなる 3mm 角の プロトタイプモジュール を開発し、集積化モジュ ールの仕様に反映。市販 の温湿度センサと組合 せ、センサ端末機能を実 証評価し、通信距離 30m 到達を確認した。	0	
	集積化実装要素技術 を確立し、集積化モジ ュールとして実証。	1~2.54mm角LSI-TEGチ ップをSi-インターポー ザーウェハに配線接続と 同時に集積化するウェハ レベルC2W接合実装プ ロセスを開発し、集積化 モジュール試作に反映。 プラズマ活性化方式C2W 接合技術を用いた、低温 (200℃)でフレキシブルな 樹脂基板上に集積化可能 なプロセスを開発した。	0	
 ②-(5)-3 高アレクトクス トククパ絶 やい キャけ・ ・ <	 【基本計画】 ・センサからの信号を収 集、処理、無線通信す る機能を備えた 3mm 角の端末本体部チップ の開発。 	・センサ信号処理及び無線 通用 RF-1 Cに必要な 外付け受動部品(キャパ シタ11個、およそ1 μ F)をシリコンインターポ ーザ上に集積する技術 の動作を実証した。 これにより、従来の外付け 受となり、端末本体部チ ップを、3mm角に小型 化することに貢献した。	0	
	【実施計画】 ウェハレベルフレキシ ブル集積化技術の実証 としてトレンチキャパ シタチップを作製し、効 果を実証する。	センサ信号処理及び無 線通信用 RF-1 Cに必要 な外付け受動部品(キャ パシタ11個、およそ1 μ F)をシリコンインターポ ーザ上に集積する技術を 開発し、端末本体チップ の動作を実証した。	0	
	超臨界流体を用いた	大口径ウェハ処理可能	\bigcirc	

	成膜技術の開発におい てアスペクト比 50 で Cu ボイド率<10%を 達成する。 この成膜技術を適用 したトレンチキャパシ タを試作する。また、 実用化に向けた装置課 題を抽出する。	な超臨界成膜装置を開発 し、Cu 埋め込み成膜にお いてアスペクト比 50 の トレンチでボイド率< 10%を達成した。 超臨界成膜技術を適用 したトレンチキャパシタ (MIM)を試作し、特性 を確認した。 また、実用化に向けた装置 課題と設計指針をドキュ	0	
②-(5)-4 高アスペク トレクア超に キャパシタ 向形成の開発	【基本計画】 MEMS センサからの 信号を収集・処理する機 能、及び計測データを無 線で通信する機能を備 えた 3mm 角の端末本体 部チップを開発。	メント化した。 小型化を実現可能とす る、高密度 Via キャパシ タ形成の為のエッチング 技術を構築。本技術は従 来加工法比で約 2 倍と高 スループット化できた事 で、デバイス製造の低コ スト化も貢献できるエッ チングプロセス技術を開 発した。	0	
	【実施計画】 ボッシュ法及び非ボッ シュ法プロセスの各プ ロセストレンドデータ 取得し、従来ボッシュ法 比較で含有カーボン量 70%以下を満たすグリ ーンな非ボッシュ法を 構築する。また、各エッ チング手法のエッチン グメカニズムを理解す る。	ボッシュ法と非ボッシ ュ法両方のプロセストレ ンドデータを取得。この 結果と表面分析結果を基 に、非ボッシュエッチン グを最適化した結果、カ ーボン含有ガスを用いな いエッチングプロセスが 構築できた。	0	
	キャパシタ仕様を満 たす為のアスペクト比 20 以上の Via エッチン グプロセス開発し、試 作実証検証を行う。	ボッシュ法と非ボッシ ュ法の組合せ最適化によ り、直径 4um、エッチン グ深さ 101um、アスペク ト比 25 の高スループッ トなエッチングプロセス を開発。デバイス試作と 低リーク大容量キャパシ タの動作検証を行った。	0	
	エッチングメカニズ ム解明の継続と、実用 化に向けた量産向けの エッチング条件および その装置仕様を決め る。	エッチング側壁をアス ペクト比量に対応て XPS 分析し、ボッシュ及び非 ボッシュエッチングの異 方性機構を考察。結果、 同じモジュールで、ボッ	0	

		シュと非ボッシュエッチ ングの両方が実施可能な プロセス構成における必 要なガス種の基本仕様が 決定できた。		
②-(5)-5 集積モジュ ール化技術 の開発	【基本計画】 MEMS センサからの 信号を収集・処理する 機能、及び計測データ を無線で通信する機能 を備えた 3mm 角の端 末本体部チップを開 発。	プロジェクト内連携に より、集積化技術を適用 した 3mm 角の端末本積 部プ(樹脂基板積水 部型)を開発し、得られた 知見をシリコンインター ポーザ上への集積チップ へ展線モジュールを開発 した。	0	
	【実施計画】 (1) 300mm ウェハ貫通 孔 Cu 充填めっき装置 を設置し、ボイドレス のめっき技術を開発す る。	(1) 新規に TSV 充填銅め っき装置を開発した。め っきプロセスシミュレー ションによって電極や遮 蔽板形状と距離を最適 化、めっき配線の面内厚 みバラつき $\pm 0.1 \mu$ m以下 になる事を確認した。 本装置を用いて、厚み 500 μ m の ϕ 300mm ウェ ハに対して ϕ 50 μ m の貫 通孔を形成、ボイドレス で銅の埋め込みが可能で あった。	Ó	
	 (2) TSV の電気特性目標 • TSV 抵抗 10mΩ以下 • リーク 1nA以下@ 10V • 耐圧 200V 以上 	(2)表裏再配線層付きのφ 300mmTSV インターポー ザを試作、面内の TSV 電 気特性を評価し、TSV 抵 抗 2.43mΩ、リーク電流 1 n A 以下、耐圧 200V 以上 を達成し、φ 300mm ウェ ハにおいて目標品質の TSV が形成可能である事 を実証した。	0	
	(3) 部品内蔵したシリ コンインターポーザへ 本プロジェクトで開発 された RF-LSI を実装 し特性を評価する。	 (3)ビアキャパシタを内蔵 したシリコンインターポ ーザを開発、RF-LSIを実 装し無線モジュールとし てワンチップ化を実現し た。 実装した RF-LSI のシス テムクロックの動作を確 認し、内蔵したビアキャ パシタが機能する事を確 	0	

		認した。		
②-(6) 低消費電力 無線通信技 術の開発	【基本計画】 (1)少なくとも 300MHz 帯と 900MHz 帯の 2 つ の周波数帯が同時受信 可能	 (1) 300MHz 帯用と、 900MHz 帯用の2つのア ナログフロントエンド基 板をデジタル処理基板に 接続し、同時受信可能な 受信機を開発した。 	0	
	(2)同時接続端末 1000 以 上	(2) シミュレーションに より、1000端末の場合に は 20s 以上の間欠時間で あれば 1%以下の電文衝 突確率で受信できること を明らかにした。	0	
	(3)受信感度-130dBm 以 下	(3)開発した受信機から -130dBmの信号を受信で きる仕様を示し、理論的 に開発した通信プロトコ ルを用い、1%以下のシン ボル誤り率で-130dBmの 信号が受信できることを 明らかにした。	0	
	【実施計画】 (4)超低消費電力通信プ ロトコルの開発。	(4)従来受信に必要であった情報を電文から削除し、更に送りたい情報を 多値化により短電文化する通信プロトコルを開発した。	0	
	(5)超低消費電力無線通 信用受信機の開発。	 (5) FPGA 内で FFT 頻度を 電文送信速度に対して 4 倍にした受信機を開発 し、(4)の通信が可能であることを示した。 	0	
②-(7) グリーンコ ンセントレ ータの開発	【基本計画】 (1)グリーン MEMS セン サ、グリーンセンサ端 末及び高感度受信機を 用いたネットワークシ ステムを構築するとと もに、店舗、製造現場 及び、オフィス環境に 適用できるシステムを 開発する。	(1)スマートコンビニ、フ ァクトリ、オフィス全て の実証現場のグリーンセ ンサネットワークシステ ムで省エネ実証の目標達 成に貢献、コンセントレ ータの有効性を確認し た。最長で約1年間にわ たる実証実験を行い、ク ラウドへのデータ送信率 約90%を達成。	0	
	【実施計画】 (2)センサ〜サーバをシ ームレスな接続、効率 的な通信と遠隔メンテ	(2)3G/LTE、WiFi、920・ 315MH z の各無線ユニッ トに対応したコンセント	0	

ナンス機能を持つこと で新センサの追加対応 が機器交換なしで可能 である専用の低電力小 型コンセントレータを 開発する。	レータを開発。また、デ ータ受信に関しては内部 テストにて 3000 個まで の内部データ処理が可能 であることを確認。メン テナンス面では遠隔での デバイス管理機能を実 装。通信負荷、コスト削 減のためマルチホップ通 信機能を実装し動作を確 認。		
(3)3G/LTE からコンセ ントレータを経由し て、アクチュエータを クラウド上から遠隔で リアルタイムに制御す るための技術開発。	(3)センサデータの受信からアクチュエータへの制御指令発信までを行う機能を開発。実証現場において自動制御の動作を確認した。また、短期間ではあるが制御指令発信から1分以内で90%以上の制御処理の実行を確認。	0	
 (4)通信障害や障害物の 影響を受けないメッシュネットワークを構成 でき、WAN 接続の通信 コスト低減を目的とした、コンセントレータ 間ホップネットワーク)を開発する。また、 通信速度 1Mbps 以上、ホップ数 3 ホップ以上、PAN 通信 遅延 100ms 以下、パケットロス率 20%以下を目 標。 	(4)フレキシブルに自動で WiFi ネットワークを形成 可能な WiFi メッシュネ ットワーク機能及び、メ ッシュネットワーク上を 効率的に通信するマルチ ホップ通信技術を開発し た。また、オフィス環境 において GCON5 台を使 用した 4 ホップ通信環境 下で、通信速度 5Mbps、 通信遅延 10ms 以下、パケ ットロス 10%の性能を達 成。	0	

	③グリーンセンサネットワークシステムの構築と実証実験						
研究開発項 目	目標	研究開発成果	達成 度	課題と解決 方針			
③-(1) スマートコ ンビニのた めのグリー ンネットワ ークシステ ムの開発	【基本計画】 グリーンネットワー クシステムの構築と、 店舗、製造現場および オフィス環境等に適用 できるシステムの開 発。	大規模システムの構築 と運用:コンビニ約2,000 店舗に約16,000のセンサ 端末を実装し、3年間に わたりデータを収集し た。	O				
	【実施計画】 SEJ 国内の 1,000 店舗 以上でモニタリングシ ステムを構築。	約 2,000 店舗に無線シス テムを実装(国内店舗数 17,277(2015 年 1 月)	0				

	省エネ 10%以上を達成	2014年に1,860店舗で10% の省エネを実現(2012年 比)	Ô	
	省エネに資するグリー ンセンサ端末およびグ リーンネットワークの 具体的な仕様を明確 化。	約 30,000 の端末を試作実 装し、センサの製造・検 査・メンテ等のフィージビ リティを検証。		
③-(2)-i) スマートオフィスートオフィスの(マスの) イス(マート) シンクの(マス) イスリーン シントテムの 開発	【基本計画】 グリーン MEMS セン サ、グリーンセンサ端 末及び高感度受信機を 用いたネットワークシ ステムを構築するとと もに、オフィス環境に 適用できるシステムを 開発する。	・中小オフィスに導入しや すい新しいコンセプトを 立案し、これを実現する 仕様の抽出/システム構 築/効果実証を実施。 ※コンセプト:『天井にセ ンサ端末を貼るだけで、 これまで見えなかったメ イムに見える化(対策も 提案)し、誰でもるシス テム』	0	
	【実施計画】 (1)センサとシステムの 仕様を抽出し、実証シ ステムに搭載する分析 機能(見える化)、自 動制御機能を開発す る。	・中小オフィスに有用な省 エネシを4つ選アレーセンサの情報を活用して運 リーンサの情報をたりまた。 に本がしてプリを前子の に本がりたい。 に本がして に、 一つの 一つの 一つの 一つの に、 一つの 一つの で の で の で の で の に に の に の に の で の に の に	0	
	(2)システムを実際のオ フィスに構築し、10% 以上の省エネ効果が得 られることを実証す る。	 ・複数オフィス [大阪、東 京] にシステム構築し、 実際に利用(手動操作/自 動制御)。 ・両物件とも、夏期/中間 期/冬期の各期間におい て10%以上の省エネを達 成した。 	0	
	(3)利用者の導入・運用 費に係るコストを最小 化するシステム構成を 検討し、投資回収期間 を適切化(理想:2年 以下)するための方策	 ・単一種類センサ(赤外線 アレーセンサ)で、複数設 備(空調+照明)/複数省エ ネ手法を運用できるシス テムを開発した。 ・さらに、位置検知システ 	0	

	を整理し試行する。	ムを利用してセンサ位置 情報を自動登録する方法 (狙い:登録作業を効率 化し人件費を削減)を提 案・評価した。 ・市場ニーズの観点から、 センサ端末に求められる 価格を整理…4000円/台 以下(実現方法を今後の 事業化に向けた取り組み でメーカらと共に検討)。		
③-(2)-ii) ナノファイ バー電行 立たグリー シントファイ 朝 ジントン シント シス 開 発	【基本計画】 グリーン MEMS セン サ、グリーンセンサ端 末及び高感度受信機を 用いたネットワークシ ステムを構築するとと もに、オフィス環境に 適用できるシステムを 開発する。	オフィスの開口部制御 による省エネ効果を検証 し、小規模オフィスにお ける環境測定センサネッ トワークと組み合わせる ことで、消費電力量10% 削減を実現減可能なシス テムの骨子を構築した。	0	
	【実施計画】 (1)小規模オフィス環境 下の利用可能な環境エ ネルギー量の抽出。	(1)オフィス環境における 最低照度や温度変化とい った環境エネルギー情報 を把握。開発する自立電 源の仕様を決定。	0	
	(2)小規模オフィスにお ける 10 %省エネシス テムの構築と実証。	 (2)季節ごとの室内環 境・消費電力量の1日の 変化をDB化。また、開 口部が原因となる熱負 荷・熱損失の低減による 冷暖房効率を向上させ、 消費電力量10%削減を確 認。 	0	
③-(3) スマイスの マイスの の の の ボ ン マイスの (業 リ ー ン キ マ ー の の 、 マ イ ス の の 、 、 、 、 の の 、 、 、 、 、 、 、 、 、 、 、	【基本計画】 グリーン MEMS セン サ、グリーンセンサ端 末及び高感度受信機を 用いたネットワークシ ステムを構築するとと もに、大規模商業ビル 環境に適用できるシス テムを開発する。	・3 種類の大規模商業ビル にグリーンセンサネット ワークシステムを構築 ・大規模商業ビルに要求さ れる省エネルギーと室内 環境の快適性の両立に向 け「室内環境の見える化 システム」を開発し、実 証実験での室内環境の評 価に活用。	0	
	【実施計画】 (1)大規模商業ビルにグ リーンセンサネットワ ークシステムを構築し 10%以上の省エネ効果 を確認。	・3 種類の大規模商業ビル にグリーンセンサネット ワークシステムを構築 し、省エネ項目の抽出と 省エネ量の試算を行い、 10%以上の省エネ効果を	0	

	ſ			
		確認。		
	(2)-1 大規模商業ビルに 適したセンサとネット ワークシステム仕様の 抽出。	 ・大規模商業ビルに有効な センサとして、電流、温 湿度、CO2、赤外線アレ イセンサを抽出し、要求 仕様や省エネ手法を整 理。 	0	
	(2)-2 大量データを扱う ことのできるデータ分 析システムの開発。	・オンラインリアルタイム 表示の「室内環境の見え る化システム」を開発。	0	
	(3)大規模クリーンルー ムにグリーンセンサネ ットワークシステムを 構築し10%以上の省エ ネ効果を確認。	・大規模クリーンルームに グリーンセンサネットワ ークシステムを構築し、 省エネ項目の抽出と省エ ネ量の試算を行い、10% 以上の省エネ効果を確 認。	0	
③-(4) スァクトファクめ・リファた場。 第) セワテム アンマート	【基本計画】 工場のエネルギー管理 における安価で施工性 の高いセンサおよびネ ットワークシステムの 開発。	自社工場および主要製造 業種9業種15サイトにお いて実証を行い、安価で施 工性の高いセンサおよび センサネットワークの開 発(試作・I/F 開発等)を 実施した。	Ø	
システムの 開発	主要製造業種における 計測・実態調査及びそれ らのデータ解析に基づ くエネルギー最適化シ ミュレーションの実施 による工程または設備 単位における省エネ効 果(または電力ピーク抑 制効果) 10%の実現。	主要製造業種9業種15サ イトにおいてセンサネッ トワークを構築し、センサ データに基づく省エネル ギー(または電力ピーク抑 制)シミュレーションを実 施することで、10%以上/ 事業所の省エネ効果(電力 ピーク抑制効果 10%以上 /事業所)を大きく上回る ことが分かった。	١	
	【実施計画】 様々な業種・業態に適 合するセンサ仕様およ び計測手法の検討。	自社工場および主要製造 業種9業種15サイトにお いてセンサネットワーク を構築し、現場環境下にお いて実用性の高いセンサ 仕様検討(試作を含む)お よび計測手法の検討を実 施した。 また、上記センサ試作機 の製作を通じて、自己給電 型電流センサの実現性、ビ ジネス化に向けたセンサ	Ö	

		コスト低減の可能性およ び同センサの顧客受容性 等の確認を実施した。		
	主要製造業種における センサネットワークの 構築により、センサデータ に対応した生産情報 がなく工程または設 単位の省エネルギー(ま たは電力ピーク抑制)シ ミュレーションの実施。	主要製造業種9業種15サ イトにおいてセンサネッ トワークを構築し、センサ データ(生産情報を含む) に基づく省エネルギー(ま たは電力ピーク抑制)シミ ュレーションを実施した。 また、実証結果に基づき、 ① センサデータに基づく 生産工程の稼働/非稼働 (待機電力)自動判定プロ グラム ② 電力ピークシフトシミ ュレーションプログラム を試作・構築した。	O	
③-(5) スマートファクトリのため工リーネックの用) グリーネッシスワークシス	【基本計画】 試作したセンサ端末を 用いて植物工場に適用 可能なセンサネットワ ークシステムを開発す る。	高湿度環境で明暗期も ある植物工場において、 開発した自立電源を搭載 したセンサ端末を用い て、24時間連続で安定動 作可能なセンサシステム を開発。	0	
アムの開発	【実施計画】 植物工場での無線セン サネットワークシステ ムを構築し、10%省エネ 効果を検証する。	植物工場内にセンサ端末 をきめ細かく設置するこ とにより栽培区画毎の環 境情報を可視化し、栽培 環境を均一化すると同時 に過剰制御を改善したこ とにより、約12%の省エ ネ効果を確認。	0	

2. 特許、論文、外部発表の状況

(1)特許(出願者、出願番号、出願地域、出願日、状態、発明の名称、発明者)

番号	出願者	出願番号	国内 外国 PCT	出願日	状態	発明の名称	発明者
1	オムロン(株), 東京大学	特願 2012-004963	国内	2012.01.14	見なし 取下	ガスセンサ	本多祐仁他
2	オムロン(㈱, 東京大学	特願 2012-004964	国内	2012.01.14	公開	ガスセンサ	本多祐仁他
3	ダイキン工業㈱	特願 2012-128411	国内	2013.06.05	公開	空気調和機の制 御装置	井ノロ 優芽 他
4	オムロン(株), 東京大学	特願 2012-141418	国内	2012.06.22	公開	ガスセンサ及び ガスセンシング 方法	本多祐仁他
5	セイコーインス ツル(株)	特願 2012-151505	国内	2012.07.05	公開	圧力スイッチ	富松大
6	産業技術総合研 究所	特願 2012-214968	国内	2012.09.27	公開	無線通信端末及 びそれを用いた 無線通信システ ム	岡田 浩尚 他
7	マイクロマシン センター, 産業技術総合研 究所	特願 2012-230461	国内	2012.10.18	登録	センサーネット ワークシステム	荒川 雅夫 他
8	マイクロマシン センター, 産業技術総合研 究所	PCT/JP2013/74036	РСТ	2013.09.06	公開	センサーネット ワークシステム	荒川 雅夫 他
9	産業技術総合研 究所, マイクロマシン センター	特願 2012-262481	国内	2012.11.30	公開	フレキシブル電 カセンサー	張毅他
10	オムロン㈱, 東京大学	特願 2012-286557	国内	2012.12.28	見なし 取下	ガスセンサ	本多祐仁他
11	オムロン(株), 東京大学	PCT/JP2013/084795	РСТ	2013.12.26	公開	ガスセンサ及び ガスセンサ構造 体	本多祐仁他
12	横河電機㈱	特願 2013-019410	国内	2013.02.04	公開	磁気検出装置	竹中一馬他
13	マイクロマシン センター	特願 2013-051198	国内	2013.03.14	見なし 取下	センサ端末	逆水 登志夫 他
14	マイクロマシン センター	PCT/JP/2014/56461	РСТ	2014.03.12	出願	センサ端末	逆水 登志夫 他

15	マイクロマシン センター	特願 2014-530047	国内	2014.03.12	登録	センサ端末	逆水 登志夫 他
16	オムロン(株)	特願 2013-051505	出願	2013.03.14	公開	赤外線センサお よび赤外線セン サチップ	田中純一他
17	オムロン㈱	PCT/JP2014/53725	РСТ	2014.02.18	公開	赤外線センサお よび赤外線セン サチップ	田中純一他
18	オムロン㈱	特願 2013-051506	国内	2013.03.14	公開	赤外線センサおよびその製造方法	田中純一他
19	オムロン㈱	PCT/JP2014/53724	РСТ	214.02.18	公開	赤外線センサおよびその製造方法	田中純一他
20	大日本印刷㈱, 早稲田大学	特願 2013-051594	国内	2013.03.14	公開	インターポーザ 基板の製造方 法	赤澤 美雪 他
21	㈱日立製作所	特願 2013-141840	国内	2013.07.05	公開	自立電源システ ム	藤森 司 他
22	㈱日立製作所	欧州:14002275.7 中国: 201410315459.0 米国:14/323694	外国	2014.07.02	出願	自立電源システ ム	藤森司他
23	横河電機㈱	特願 2013-147732	国内	2013.07.16	出願	電流センサ	三戸(慎也)他
24	セイコーインス ツル㈱, 東京大学, 産業技術総合研 究所	特願 2013-155791	国内	2013.07.26	公開	塵埃量検出装置 および塵埃量検 出装置の制御方 法	富松大他
25	産業技術総合研 究所	特願 2013-172165	国内	2013.08.22	公開	電圧検出回路	岡田 浩尚 他
26	オリンパス(株)	特願 2013-172635	国内	2013.08.22	公開	ガスセンサ	白石 直規
27	産業技術総合研 究所	特願 2013-194779	国内	2013.09.20	公開	無線センサ端末及び無線送信方法	岡田 浩尚 他
28	マイクロマシン センター, 産業技術総合研 究所	特願 2013-211072	国内	2013.10.08	公開	無線センサ端末	荒川 雅夫 他

29	東京工業大学, 日清紡ホールデ ィングス(㈱	特願 2014-019164	国内	2014.02.04	出願	光電変換素子お よび光電変換素 子の製造方法	青塚 聡 他
30	産業技術総合研 究所	特願 2014-020888	国内	2014.02.06	出願	無線受信装置及 び無線受信方法	岡田 浩尚 他
31	産業技術総合研 究所	特願 2014-020909	国内	2014.02.06	出願	無線通信システ ム	岡田 浩尚 他
32	東京電力㈱	特願 2014-023416	国内	2014.02.10	出願	自己給電式電流 測定装置	川原慶喜他
33	産業技術総合研 究所	特願 2014-035624	国内	2014.02.26	見なし 取下	無線受信装置及 び無線受信方法	岡田 浩尚 他
34	産業技術総合研 究所	特願 2015-033851	国内	2015.02.24	出願	無線受信装置及 び無線受信方法	岡田 浩尚 他
34	㈱NTT データ	特願 2014-042973	国内	2014.03.05	出願	メッシュネット ワークシステム, 中継装置,メッシ ュネットワーク の制御方法,及び プログラム	盛合 智紀 他
35	ダイキン工業㈱	特願 2014-074914	国内	2014.03.31	出願	温度分布データ 生成システム	井ノロ 優芽 他
36	ダイキン工業㈱	特願 2014-074915	国内	2014.03.31	出願	温熱環境再現シ ステム	鈴木 雅富 他
37	ダイキン工業㈱	特願 2014-074916	国内	2014.03.31	出願	省エネ関連情報 生成システム	井ノロ 優芽 他
38	横河電機㈱	特願 2014-088241	国内	2014.04.22	出願	電流センサ	三戸(慎也)他
39	住江織物㈱, 東京工業大学, 信州大学	特願 2014-110732	国内	2014.05.29	出願	光発電系及びそ の製造方法	池田 佳加 他
40	㈱NTT データ	特願 2014-132406	国内	2014.06.27	出願	通信装置,通信制 御方法およびプ ログラム	小島康平他
41	ローム(株)	特願 2014-141934	国内	2014.07.10	出願	センサノード通 信端末,ホスト通 信端末および無 線センサネット ワークシステム	加藤 友裕 他
42	産業技術総合研 究所	特願 2014-173938	国内	2014.08.28	出願	フレキシブル電 流センサ及びそ の製造方法	山下 崇博 他

43	信州大学, 東京工業大学, 日清紡ホールデ ィングス㈱	特願 2014-247903	国内	2014.12.08	出願	光電変換素子,光 電変換素子にお ける光電変換層 の製造方法,太陽 電池,及び電子機 器	木村 睦 他
44	オリンパス(株)	特願 2015-023039	国内	2015.02.09	出願	ガスセンサ	白石 直規
45	セイコーインス ツル㈱, 東京大学	特願 2015-051279	国内	2015.03.13	出願	 圧力センサ,触覚 センサ,及び圧力 センサの製造方 法 	海法 克亨 他
46	大日本印刷㈱, ㈱デンソー, マイクロマシン センター	予定				 (発明届: 2015.03.19)キャ パシタ上方に金 属薄膜層を配置 する実装基板と それを用いたセ ンサ端末装置 	富樫 和義 他
47	 (㈱デンソー, 大日本印刷㈱, (㈱アルバック, マイクロマシン センター 	予定				(発明届: 2015.03.19)半導 体装置	北村康宏他

T

(2)論文(発表者、所属、発表内容、発表先、査読、発表年月)

Г

番号	発表者	所属	発表内容	発表先	査 読	発表 年月
1	高橋 英俊, グエンミンジューン, 松本 潔, 下山 勲	東京大学	Differential Pressure Sensor Using A Piezoresistive Cantilever	Journal of Micromechanics and Microengineering 22(2012)055015	有	2012 年 4 月
2	Kazuma TSUBOI, Tadashi FUKAWA, Yuichi KONOSU, Hidetoshi MATSUMOTO, Akihiko TANIOKA	大岡山研究 センター	Solution-Processed Nanowire Coating for Light Management in Organic Solar Cells	Journal of Nanotechnology	有	2012 年 7 月
3	N.Shiraishi, T.Ikehara, D.V.Dao, S.Sugiyama, Y.Ando	つくば研究 センター	Fabrication and testing of polymer cantilevers for VOC sensor EUROSENSOR2012 の特集号	Sensors and Actuators A	有	2012 年 12 月

4	富松 大, 高橋 英俊, 桑名 健太, 小林 健, 松本 潔, 下山 勲, 伊藤 寿浩, 前田 龍太郎	つくば研究 センター	A piezoelectric flow sensor for use as a wake-up switch for a wireless sensor network node	Mechatronics	有	2013年3月
5	伊藤 寿浩, 前田 龍太郎	産業技術総 合研究所	「グリーンセンサ ネットワークプロ ジェクト」の取り組 みと課題	電気学会誌 2013 年 Vol.133 4月号	有	2013年4月
6	西野 淳, 橋本 哲	ダイキン工 業㈱	省エネルギー化に 向けた空調制御の 取り組みとセンサ ネットワーク	電気学会誌 2013 年 Vol.133 4月号	有	2013年4月
7	本多 祐仁, 田中 純一	オムロン(株)	環境センシングデ バイスの開発	電気学会誌 2013 年 Vol.133 4月号	有	2013年4月
8	奥良彰	ローム(株)	室内照明による高 効率環境発電デバ イスと自立電源の 開発	電気学会誌 2013 年 Vol.133 4月号	有	2013 年 4 月
9	藤森司	つくば研究 センター	センサネットワー ク用低電力アナロ グフロントエンド 回路技術の開発	電気学会誌 2013 年 Vol.133 4 月号	有	2013 年 4 月
10	N.Shiraishi, T.Ikehara, D.V.Dao, S.Sugiyama, Y.Ando	つくば研究 センター	Dynamic properties of hot embossing polymer cantilever for VOC sensor	Springer Journal of Microsystems Technologies	有	2013年6月
11	Qingsheng Zhu, Akira Toda, Yi Zhang, Toshihiro Itoh, Ryutaro Maeda	つくば研究 センター	High-Speed Copper Filling within High Aspect Ratio Through Holes in Polymer Substrates	International Journal of Electrochemical Science, 2013 年	有	2013 年 7 月
12	 富松 大, 桑名 健太, 小林 健, 伊藤寿浩, 前田 龍太郎 	つくば研究 センター	A piezoelectric flow sensor for wake-up switch of wireless sensor network node	Journal of Micromechanics and Microengineering, vol. 23, no. 11, pp. 114003, 2013	有	2013年11月
13	富松 大, 高橋 英俊, 小林 健, 松本 潔, 下山 勲, 伊藤 寿浩, 前田 龍太郎	つくば研究 センター	A PIEZOELECTRIC CANTILEVER-TYP E DIFFERENTIAL PRESSURE SENSOR FOR A LOW STANDBY POWER TRIGGER SWITCH	Journal of Micromechanics and Microengineering, vol. 23, no.12, pp. 125023, 2013.	有	2013年11月

14	高橋 英俊, 富松 大, 小林 健, 磯崎 瑛宏, 松本 潔, 下山 勲, 伊藤 寿浩, 前田 龍太郎	東京大学	A smart, intermittent driven particle sensor with an airflow change trigger using a lead zirconate titanate (PZT) cantilever	Measurement Science and Technology	有	2014 年 1 月
15	N. Shiraishi, M.Kimura, H. Okada, Y. Ando	つくば研究 センター	ポリマーベース振 動式センサの開発 成果およびセンサ を用いた VOC 濃度 測定結果の論文発 表	Journals of the Japan Society of Mechanical Engineers, Mechanical Engineering Journal	有	2014 年 7 月
16	マイクロメカトロ ニクス実装技術委 員会(文責:鈴木 章 夫)	つくば研究 センター	無線センサーを用 いた大規模電力モ ニタリング実験	エレクトロニクス 実装学会誌 Vol.18,No.1(2015)	有	2015 年 1 月
17	宮内 亮二	東京電力㈱	エネルギー計測デ ータに基づく生産 効率化及び省エネ ルギーの実現(韓国 語訳は発行者であ る韓国プラスチッ ク技術情報センタ ーにて実施)	韓国専門誌「Plastics Science」2015年3 月号 ※「月刊プラスチッ クスエージ」2013 年8月号からの転 載	無	2015 年 3 月
18	魯 健, 岡田 浩尚, 伊藤 寿浩, 前田 龍太郎, 原田 武	つくば研究 センター	Towards the World Smallest Wireless Sensor Nodes with Ultra-low Power Consumption	IEEE SENSORS Journal	有	未定
19	魯 健, 張 嵐, 岡田 浩尚, 伊藤 寿浩, 前田 龍太郎, 原田 武	つくば研究 センター	Wireless Sensor Nodes with Ultra-low Power Consumption for Low-Frequency Vibration Monitoring	電気学会論文誌 E (センサ・マイクロ マシン部門誌) (Special Issue of 31st Sensor Symposium)	有	未定
20	坪井 一真, 中真, 松本川 一真, 花史, 花史, 町 で で の 町 町 和 町 町 和 町 町 郡 町 町 郡 町 町 郡 町 町 、 満 の , 町 で 、 , 町 で 、 , 町 で 、 , 町 で 、 , 町 で 、 , 町 で 、 , 町 、 、 , 町 、 、 , 町 、 、 、 、 、 、 、 、 、	大岡山研究 センター	樹脂コーティング 封止層を有する繊 維状および布帛状 有機薄膜太陽電池 における光吸収特 性の検討	一般社団法人繊維学会「繊維学会誌」	有	未定

(3)外部発表

(a) 学会発表·講演(発表者、所属、発表内容、発表先、発表年月)

	発表者	所属	発表内容	発表先	発表年月
1	前田 龍太郎	つくば研究 センター	Green Sensor Network with Low-Cost,Layout-and Maintenance-Free MEMS Sensors	JCK MEMS/NEMS 2011	2011年9月
2	谷岡 明彦	大岡山研究 センター	ナノファイバーが拓くグリ ーンイノベーション(仮題) ~ファッションからエネル ギーまで~	第三回グリーンナ ノフォーラム	2011年10月
3	奥谷 英司	NEDO	グリーンセンサ・ネットワー クシステム技術開発プロジ ェクトの概要	次世代センサ協議 会 68 回セミナー 「グリーンセンサ ーエネルギー不足 を救済するテクノ ロジー」	2011 年 11 月
4	氣 駕昇, 竹井 裕介, 高橋 英俊, 松本 潔, 下山 勲	つくば研究 センター	CNT-FET Gas Sensor using a Functionalized Ionic Liquid as Gate	MEMS2012 The25th International Conference on Micro Electro Mechanical Systems	2012年1月
5	石津 光太郎, 菅 哲朗, 竹井 裕介, 高橋 英俊, 松本 潔, 下山 勲	つくば研究 センター	Carbon Dioxide Detection by surface plasmon resonance with ionic liquid	MEMS2012 The25th International Conference on Micro Electro Mechanical Systems	2012年1月
6	坪井 一真, 布川 正史, 松本 英俊, 谷岡 明彦	大岡山研究 センター	ナノファイバーを利用した 光電変換素子への光取り込 み効率の改善	2012 年春季第 59 回応用物理学関係 連合講演会	2012 年 2 月
7	富松 大, 桑名 健太, 小林 健, 伊藤 寿浩, 前田 龍太郎	つくば研究 センター	A piezoelectric flow sensor for wake-up switch of wireless sensor network node	dMEMS2012 4/2-3/2012	2012年4月
8	植木 真治, 今藤 浩史, 安藤森 司, 杉山 藤, 伊藤 龍太郎	オムロン(株)	development of multi-functional sensor module for energy saving air conditioner system	dMEMS2012 4/2-3/2012	2012 年 4 月

9	伊藤 寿浩, 前田 龍太郎 N. Shiraishi,	つくば研究 センター つくば研究	Application of networked microsystem technologies to green sensor network system Dynamic properties of hot	DTIP(Symposium on Design,Test,Integra tion & Packaging of MEMS/MOEMS)2 012 MIPE2012	2012 年 4 月 2012 年 6 月
10	T. Ikehara, S. Sugiyama, Y. Ando, 白石直規	センター	embossing polymer cantilever for VOC sensor		
11	藤本 淳, 古澤 真吾, 鈴木 章夫	つくば研究 センター	Would Power Monitoring Using Wireless Sensor Nodes Savior for Power Saving in Society?	ELECTRONICS GOES GREEN 2012+	2012 年 9 月
12	N.Shiraishi, T.Ikehara, S.Sugiyama, Y.Ando	つくば研究 センター	Fabrication and testing of polymer cantilevers for VOC sensor	EUROSENSORS2 012	2012 年 9 月
13	作石 敏幸, 村山 貴英, 森川 泰宏, 吉 居学, 鄒 弘鋼	つくば研究 センター	次世代集積化 MEMS 向け Si インターポーザー形成技術	2012 秋季 第 73 回応用物理 学会学術講演会	2012 年 9 月
14	Yasuhiro Morikawa, Takahide Murayama, Toshiyuki Sakuishi, Toshiyuki Nakamura, Takashi Kurimoto, Yuu Nakamuta, Isao Kimura, Koukou Suu	(株)アルバッ ク	GSN で進めてきたエッチン グ技術の発表を中心にその 後の工程をアルバック拠点 の要素技術を使ってメッキ まで行った低コストなイン テグレーション技術の発表	IMAPS2012 2012/9/9-13	2012 年 9 月
15	瓜生 敏史, 小林 健, 善見 誠一, 藤本 興冶, 鈴木 浩助, 伊藤 寿浩, 前田 龍太郎	大日本印刷 ㈱	8インチ PZT 薄膜の形成にお ける結晶化温度の影響	第 73 回応用物理 学会学術講演会	2012 年 9 月
16	山田 英雄, 大原 淳士, 百瀬 健, 内田 博久, 霜垣 幸浩, 杉山 正和	デンソー(株)	Reactor Design for Novel Deposition Technique Using Supercritical Fluid	IUMRS-ICEM2012	2012 年 9 月

17	N. Shiraishi, T. Ikehara, S. Sugiyama, Y. Ando, 白石 直規	つくば研究 センター	Characteristics of higher order resonance mode of polymer cantilever for VOC sensor	IUMRS-ICEM2012	2012 年 9 月
18	村山 貴英, 作石 敏幸, 森川 泰宏	つくば研究 センター	A Scallop Free Deep Si Etching Method In Magnetic Neutral Loop Discharge Plasma	IUMRS-ICEM2012 2012.9.23-28	2012 年 9 月
19	魯 健, 岡田 浩尚, 伊藤 寿浩, 原田 武	つくば研究 センター	Super Compact Wireless Sensor Nodes for Environmental Monitor and Power Saving Applications	IUMRS-ICEM2012 2012.9.23-28	2012 年 9 月
20	藤森 司, 大島 俊, 後藤 康, 伊藤 寿浩, 前田 龍太郎	つくば研究 センター	Low-Power Analog-Front-End Circuits with Digital Calibration for Sensor Networks	IUMRS-ICEM2012	2012 年 9 月
21	 富松 大, 桑名 健太, 小林 健, 伊藤 寿浩, 前田 龍太郎 	つくば研究 センター	A piezoelectric flow sensor for wake-up switch of wireless sensor network node	IUMRS-ICEM2012 2012.9.23-28	2012 年 9 月
22	瓜生 敏史, 小林 健, 善見 誠一, 藤本 興冶, 鈴木 浩助, 伊藤 寿浩, 前田 龍太郎	大日本印刷 ㈱	Mass-production of PZT thin films using automated sol-gel deposition system for 200 mm wafer	IUMRS-ICEM2012	2012 年 9 月
23	西野 淳, 鈴木 雅富, 橋本 哲	ダイキン工 業㈱	スマートオフィスに向けた グリーンセンサと空調技術	第 29 回「センサ・ マイクロマシンと 応用システム」シ ンポジウム	2012 年 10 月
24	作石 敏幸, 村山 貴英, 中村 敏幸, 森川 泰宏, 鄒 弘鋼	つくば研究 センター	次世代集積化 MEMS 実装向 け Si インターポーザ形成技 術	第 29 回「センサ・ マイクロマシンと 応用システム」シ ンポジウム	2012 年 10 月
25	藤森 司, 大島 俊, 後藤 康, 伊藤 寿浩, 前田 龍太郎	つくば研究 センター	グリーンセンサ用低消費電 カアナログフロントエンド 回路	第29回「センサ・ マイクロマシンと 応用システム」シ ンポジウム	2012 年 10 月
26	伊藤 寿浩, 谷岡 明彦, 前田 龍太郎	つくば研究 センター	グリーンセンサ・ネットワー クシステム技術開発プロジ ェクト	第 29 回「センサ・ マイクロマシンと 応用システム」シ ンポジウム	2012年10月

	藤本 淳,	つくば研究	グリーンセンサネットワー	第29回「センサ・	2012年10月
27	古澤 真吾,	センター	クの実証『セブンイレブンの	マイクロマシンと	
21	鈴木 章夫		例』	応用システム」シ	
				ンポジウム	
	本多 祐仁,	つくば研究	Low-power-consumption CO2	sensors2012	2012 年 10 月
	竹井 裕介,	センター	gas sensor using ionic liquids		
	石津 光太郎,		for Green energy management		
28	今本 浩史,				
	伊滕 寿浩,				
	則田 龍太岛, 松木 湖				
	五平 孫,				
	藤本 淳	産業技術総	ワイヤレスヤンサネットワ		2012年10月
20		合研究所	ークシステムは"省エネ"の	会・先端アプリ講	2012 10 / 1
29			救世主か?	座	
	溢水 惑士土		ガリーンセンサ・ネットワー	次世代センサ協議	2012 年 11 日
30	步小 金心大	네ㅋㅋ	クシステム技術開発プロジ	び世代ビンリ励戦	2012 + 11 月
50			ェクトの概要	セミナー	
	加藤 暁之	本部	電力モニタリングを非接触	次世代センサ協議	2012年11月
31		,	で可能にする高感度電流・磁	会グリーンセンサ	
			界センサの開発	セミナー	
	本多 祐仁	本部	オン液体のCO2吸着を用いた	次世代センサ協議	2012 年 11 月
32			低消費電力CO2濃度センサの	会グリーンセンサ	
		L den	開発	セミナー	
	滕森 司	本部	低消費電力センサ端末を実	次世代センサ協議	2012年11月
33			現するエイルモーマインメ	会クリーンセンサ	
			の開発		
	松本 英俊	本部	「「「「」」」	次世代センサ協議	2012 年 11 月
			を用いた高効率自立電源の	会グリーンセンサ	
34			開発	セミナー	
	瓜生 敏史.	大日本印刷	Mass-production of PZT thin	PowerMEMS2012	2012年12月
	小林 健,	(株)	films using automated sol-gel		
	善見 誠一,		deposition system for 8 inch		
35	藤本 興冶,		water		
	鈴木 浩助,				
	伊滕 寿浩,				
	前田 龍太郎 宣松 十	へくげជ売	A piezoalectric contilovor with	PowerMEM\$2012	2012 年 12 日
	亩位 八, 言插 茁倦	ノトは研究 ヤンター	Helmholtz resonator for a		2012 - 1 2 H
	小林 健		sound-triggered wake-up switch		
36	松本 潔.				
	下山 勲,				
	伊藤 寿浩,				
	前田 龍太郎				

37	本多 祐仁, 竹井 裕介, 石津 光太郎, 今本 浩史, 伊藤 寿浩, 前田 龍太郎, 松本 潔, 下山 勲	つくば研究 センター	Development and application of CO ₂ gas sensor using the impedance change of ionic liquid	第三回イオン液体 討論会	2012年12月
38	稲葉 亮, ユ クアンヒョン, 竹井 裕介, 松本 潔, 下山 勲	東京大学	A GRAPHENE FET GAS SENSOR GATED BY IONIC LIQUID	MEMS2013 The26th International Conference on Micro Electro Mechanical Systems	2013 年 1 月
39	Qingsheng Zhu, Akira Toda, Yi Zhang, Toshihiro Ito, Ryutaro Maeda	つくば研究 センター	High-Speed Copper Filling within High Aspect Ratio through Holes in Polymer Substrates	第27回エレクト ロニクス実装学会 春季講演大会	2013 年 2 月
40	三戸 慎也, 竹中 一馬, 加藤 暁之	つくば研究 センター	超小型電流センサにおける 低バイアス磁界印加用構造 体の開発	2013 年度精密工 学会春季大会学術 講演会	2013年3月
41	 赤澤 美雪, 藤本 興冶, 倉持 悟, 鈴木 浩助, 齋藤 美紀子 	大日本印刷 ㈱	高アスペクト比ビアにおけ る Cu めっきの初期成長に関 する微量 Sn 添加の影響評価	第 27 回エレクト ロニクス実装学会 春季講演大会	2013 年 3 月
42	富松 大, 高橋 英俊, 小林 健, 松本 潔, 下山 勲, 伊藤 寿浩, 前田 龍太郎	つくば研究 センター	A wake-up switch using a piezoelectric differential pressure sensor	ISSNIP2013	2013 年 4 月
43	本多 祐仁, 本 2 祐仁, 7 米 本介, 野田 花, 5 米 森介, 野田 葉 亮, 伊藤 龍太郎, 前田 太 潔, 下山 勲	つくば研究 センター	Ionic Gel based Carbon Dioxide Gas Sensor	DTIP2013	2013 年 4 月

	富松 大,	つくば研究	Measurement of an airflow	DTIP2013	2013 年 4 月
	高橋 英俊,	センター	velocity change using a		
	桑名 健太,		cantilever with Pb(Zr, 11)O3		
44	小林健,				
	松本 潔,				
	下山 勲,				
	伊滕 寿浩,				
	前田 龍太郎			DTID2012	
	習 健 , 図田 進出	つくは研究	Assembly of Super Compact Wireless Sensor Nodes for	DTIP2013	2013 年 4 月
45	回田 借问, 丹蓝 圭洲	センター	Environmental Monitoring		
	伊藤 寿宿, 前田 趙十郎		Applications		
	间田 龍太郎, 百田 武				
		大日本印刷	Development of TSV Interposer	DTIP2013	2013 年 / 日
	百九 飒 , 馬渡 宏	(株)	with 300 mm Wafer for 3D	D111 2013	2013 - - 7
	赤澤 美雪	(14)	Packaging		
	松本 秀信.				
46	藤本 興冶,				
	鈴木 浩助,				
	伊藤 寿浩,				
	前田 龍太郎				
	本多 祐仁,	つくば研究	Ionic-Liquid Gel based Carbon	5thCOIL	2013 年 4 月
	石津 光太郎,	センター	Dioxide Gas Sensor		
	竹井 裕介,				
47	今本 浩史,				
	松本 潔,				
	下田 恝, 四茲 圭洲				
	伊藤 寿宿, 前田 朝大郎				
	本多 祐仁	つくげ研究	Ionic Gel based Carbon	233rd ECS Meeting	2013 年 5 日
	石津 光太郎	センター	Dioxide Gas Sensor	The Electro	2013 - 57
	竹井 裕介.			Chemistry Society	
48	松本 潔,				
	下山 勲,				
	伊藤 寿浩,				
	前田 龍太郎				
	善見 誠一,	大日本印刷	Development of 300mm	IEEE ECTC 2013	2013 年 5 月
	馬渡 宏,	(株)	Interposer with Redistribution		
	赤澤 美雪,		MEMS Processes		
49	松本 秀信,				
	滕本 興石,				
	新个 借助, 丹蒂 圭洲				
	伊藤 寿信, 前田 静大郎				
	小山 肥八印 	㈱アルバッ	Total Cost Effective Scallon	ECTC2013	2013
	村山 貴革	(11), 10, · ·) 力	Free Si etching for 2.5D & 3D	2013/5/28-31	2013 + 3 A
50	作石 敏幸		TSV Fabrication Technologies		
20	中牟田 雄.		in 300mm Wafer		
	Suu Koukou				

51	大島俊	つくば研究 センター	次世代医療診断向けデジタ ルアシスト高性能 A/D 変換 技術	群馬大学アナログ 集積回路研究会	2013 年 7 月
52	富松 大, 高橋 英俊, 小林 健, 松本 潔, 下山 勲, 伊藤 寿浩, 前田 龍太郎	つくば研究 センター	AlN cantilever for differential pressure sensor	2013 Joint UFFC EFTF and PFM	2013 年 7 月
53	Naoki Shiraishi	つくば研究 センター	ポリマー (PMMA・PC・PET) カンチレバーの振動特性(振 動モードとQ値・共振周波数 の関係)を大気中で実験検証 した結果の口頭発表	JCK2013	2013 年 8 月
54	本多 祐仁, 伊藤 寿浩, 前田 龍太郎	つくば研究 センター	Ionic Gel based Carbon Dioxide Gas Sensor	ECS(Electro Chemistry Society) 24th JCK2013 MEMS	2013 年 8 月
55	Nobuyoshi Moriwaki, Takeshi Kobayashi, Yasuhiro Suzuki, Natsumi Makimoto, Koji Fujimoto, Kosuke Suzuki, Toshihiro Itoh, Ryutaro Maeda	大日本印刷 (株)	In-plane Distribution of Piezoelectric and Ferroelectric Properties of Pb(Zr,Ti)O3 Thin Film Devices on 200 mm SOI Wafer	The 4th Japan-China-Korea Joint Conference on MEMS/NEMS 2013	2013 年 8 月
56	海法 克享, 高橋 英俊, 富松 大, 小林 健, 松本 潔, 下山 勲, 伊藤 寿浩, 前田 龍太郎	つくば研究 センター	An AlN cantilever for air differential pressure detection with high sensitivity	The 4th Japan-China-Korea Joint Conference on MEMS/NMES 2013	2013 年 8 月
57	三戸 慎也, 加藤 暁之, 竹中 一馬	つくば研究 センター	Development of High-Accuracy and Non-Contact Current Sensor	The 4th Japan-China-Korea Joint Conference on MEMES/NEMS 2013	2013 年 8 月
58	N. Shiraishi, M. Kimura and Y. Ando	つくば研究 センター	ポリマーベース振動式セン サの開発成果およびセンサ を用いた VOC 濃度測定結果 の口頭発表	MNE2013	2013年9月

	武田 宗久	本部	グリーンセンサシステムの	次世代センサ協議	2013 年 9 月
59			現状と社会インファへの期 待	会社会インファ・	
				テム研究会第5回	
				情報交流会	
	鈴木 雅富,	ダイキンエ	中小規模ビル向け省エネ情	平成 25 年度空気	2013 年 9 月
	四野 俘, 而村 剛	耒休	報ンヘアムの用発 (弗 1 報) 関発コンセプトレ省エネ効		
60	樋江井 武彦,		果の試算結果		
	橋本 哲,				
	今本 浩史	(11)		N (+ DC 2012	
	森川 泰宏,	㈱アルバッ	2.5 / 3D PACKAIGING	IMAPS 2013	2013 年 9 月
61	竹山 貝央, 作石	2	FOR HIGH FREQUENCY		
	鄒 弘綱		DEVICE		
	鄒 弘綱 (代理	㈱アルバッ	TSV TECHNOLOGY	IMPACT-IAAC	2013年10月
62	の場合,森川 泰	ク	SOLUTION FOR 3D	2013 Joint	
	宏) X Marilanna	(#) ~	Neuel TSV Etching		2012 年 10 日
	T. Murayama,	(株) ブルハッ カ	Technologies using Spatial and	AVS 60th International	2013年10月
63	T. Sakuishi,		Temporal Control Plasma	Symposium and	
	K. Suu 鱼 健	へくげ研究	Towards the World Smallest	Exhibiti	2012 年 11 日
	留 健, 岡田 浩尚.	シンは明元センター	Wireless Sensor Nodes with	2013	2013 + 11 月
64	伊藤 寿浩,		Low Power Consumption for		
	前田 龍太郎,		Green' Sensor Networks.		
	原田 武	っくげ研究	D7T わいましい。 た田いた	答 20 回「去)、斗	2012 年 11 日
	海法 兄亭, 宣松 大	つくは研究 センター	PZI カンテレハーを用いた 高咸度低消費電力の差圧セ	第30回 センサ・	2013年11月
	高橋 英俊,		ンサ	応用システム」シ	
65	小林 健,			ンポジウム	
05	松本 潔,				
	▶山 勲, 伊藤 圭洪				
	伊藤 寿信, 前田 龍太郎				
	武田 宗久	本部	グリーンセンサネットワー	平成25年第2回セ	2013 年 11 月
66			クプロジェクトの概要及び	ンサネットワーク	
00			これまでの成果について紹	研究会	
	荒川 雅夫	本部	オフィス空調によろ省エネ	平成25年第2回セ	2013 年 11 月
67			開発事例(赤外線アレイセン	ンサネットワーク	2013 - 11 /]
			サ応用)	研究会	
	加藤 暁之	つくば研究	磁気・電流センサの先進開発	平成25年第2回セ	2013 年 11 月
68		センター	事例	ンサネットワーク 研究会	
	鈴木 章夫	つくば研究	コンビニにおける省エネ開	平成25年第2回セ	2013 年 11 月
69		センター	発事例(スマートコンビニ)	ンサネットワーク	
				研究会	
70	Qingsheng Zhu, Akira Toda, Yi Zhang, Toshihiro Itoh, Ryutaro Maeda	つくば研究 センター	Micro-fabrication of Flexible Coils with Copper Filled Through Polymer Via Structures	PowerMEMS 2013	2013 年 12 月
----	--	---------------	--	---	-------------
71	海法 克享, 富松 大, 高橋 英俊, 小林 健, 松本 潔, 下山 勲, 伊藤 寿浩, 前田 龍太郎	つくば研究 センター	An AlN cantilever for a wake-up switch triggered by air pressure change	Power MEMS2013	2013年12月
72	Nobuyoshi Moriwaki, Takeshi obayashi, Yasuhiro Suzuki, Natsumi akimoto, Koji Fujimoto, Kosuke Suzuki, Toshihiro Itoh, Ryutaro Maeda	大日本印刷 ㈱	Influence of Bipolar Pulse Poling Technique for Piezoelectric Vibration Energy Harvesters using Pb(Zr,Ti)O3 Films on 200 mm SOI Wafers	The 13th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications(Power MEMS 2013)	2013 年 12 月
73	谷岡 明彦	大岡山研究 センター	グリーンセンサ・ネットワー クシステム技術プロジェク トの概要を紹介する	e-テキスタイル製 品開発研究会第3 回例会	2013 年 12 月
74	田中 純一, 相田 冨実二, 積 知範, 大場 正利	オムロン(株)	THERMOPILE INFRARED ARRAY SENSOR FOR HUMAN DETECTOR APPLICATION	MEMS2014	2014年1月
75	作石 敏幸, 村山 貴英, 森川 泰宏, 鄒 弘綱	(株)アルバッ ク	Development of the technology to control the spatial distribution of plasma using double ICP coil.	ICRP-8 / SPP-31	2014年2月
76	村山 貴英, 作石 敏幸, 森川 泰宏, 鄒 弘綱	(株)アルバッ ク	Hybrid Etching Technologies for TSV and SiO2 in 300mm TSV	ICRP-8 / SPP-31	2014 年 2 月
77	奥 良彰	ローム(株)	有機系太陽電池とセンサネ ットワーク(資料未着)	RATO(有機系太陽電池技術研究組合)第二回用途開 拓シンポジウム	2014年2月
78	村山 貴英	(株)アルバッ ク	大容量キャパシタ向け高ア スペクト比 TSV エッチング プロセスの開発	2014年 第61回応 用物理学会春季学 術講演会	2014年3月
79	山下 崇博, 張 毅, 伊藤 寿浩, 前田 龍太郎	つくば研究 センター	スクリーン印刷によるフレ キシブル電流センサの開発	2014 年度精密工 学会春季大会学術 講演会	2014年3月

80	海法 克享, 富松 大, 高橋 英俊, 小林 健, 松本 潔, 下山 勲, 伊藤 寿浩, 前田 龍太郎	つくば研究 センター	AlN カンチレバーを用いた 高感度低消費電力の圧力変 動検出スイッチ	精密工学会 2014 年度春季大会	2014年3月
81	森脇 政仁, 小林 健, 牧本 なつみ, 鈴木 靖弘, 藤本 興治, 鈴木 浩助, 伊藤 龍太郎	大日本印刷 (株)	チタン酸ジルコン酸鉛薄膜 デバイスの 200 mm 径ウェハ での作製技術	精密工学会 2014 年度春季大会	2014 年 3 月
82	NMEMS, 日立/大島 俊	つくば研究 センター	次世代医療診断向けデジタ ルアシスト A/D 変換技術	第 54回 STARC ア ドバンストセミナ ー	2014 年 3 月
83	山下 崇博, 張 毅, 伊藤 寿浩, 前田 龍太郎	つくば研究 センター	Flexible current clamp sensor using screen-printed coil	DTIP2014	2014 年 4 月
84	森川 泰宏, 村山 貴英, 作石 敏幸, 鄒 弘綱	(株)アルバッ ク	GSN で進めてきたキャパシ タ性能改善の為のエッチン グプロセス技術を使った発 表	ECTC2014	2014 年 5 月
85	作石 敏幸, 村山 貴英, 森川 泰宏, 鄒 弘綱	(株)アルバッ ク	GSN で進めてきたキャパシ タ性能改善の為の ICP プラズ マ生成技術の成果発表	ECTC2014	2014 年 5 月
86	魯健, 岡田 浩尚, 伊藤 寿浩, 前田 龍太郎, 原田 武	つくば研究 センター	3D Integration and Assembly of Wireless Sensor Nodes for 'Green' Sensor Networks	The 64th Electronic Components and Technology Conference (ECTC-2014)	2014 年 5 月
87	山下 崇博	つくば研究 センター	スクリーン印刷を用いた低 コストフィルム型電流セン サ製造技術の開発	第3回プリンテッ ドエレクトロニク スコンベンション (PEC Japan 2014)	2014 年 6 月
88	魯 健, 岡田 浩尚, 張 嵐, 伊藤 寿浩, 前田 龍太郎, 原田 武	つくば研究 センター	Flexible Wireless Sensor Nodes for Application in 'Green' Sensor Networks	The 5th Japan-China MEMS/NEMS with Nano Korea 2014	2014 年 7 月

89	西野 淳, 鈴木 雅富, 井ノロ 優芽, 橋本 哲	ダイキン工 業㈱	A Study on BEMS based on behavioral economics for small and medium-sized buildings	2nd International Conference on The Human Side of Service Engineering	2014 年 7 月
90	木下 泰三	つくば研究 センター	エネルギーハーベスティン グ活用 M2M システムの応用 事例	エネルギーハーベ スティング技術シ ンポジウム (展示 会 Techno-Frontier 内で併催)	2014 年 7 月
91	奥 良彰	ローム(株)	『グリーンセンサネットワ ークプロジェクト (GSN プロ ジェクト) 』	第5回エネルギ ー・ハーベスティ ング技術シンポジ ウム (TECHNO-FRO NTIER 2014)	2014 年 7 月
92	海京, 京大, 後, 小松本山 藤 一 伊藤 田 前田	つくば研究 センター	A pressure sensor using a piezoelectric cantilever for a wake-up trigger of an event-driven dust sensor	The 15th IUMRS-Internation al Conference in Asia (IUMRS-ICA 2014)	2014 年 8 月
93	松本 英俊, Priangga Perdana Putra, 鴻巣 裕一, 布川 正史, 谷岡 明彦	大岡山研究 センター	Electrospun ZnO Nanofiber Network for Efficient Charge Collection of Organic Solar Cells	MRS の国際学会 IUMRS-ICA2014 ・シンポジウム A4: Autonomous Micro Systems for Life, Green and Safety	2014 年 8 月
94	Takahiro Yamashita, Yi Zhang, Toshihiro Itoh, Ryutaro Maeda	つくば研究 センター	Characterization of flexible clamp type current sensor using screen-printed coil	International Union of Materials Research Societies- The IUMRS International Conference in Asia 2014 (IUMRS-ICA 2014)	2014 年 8 月
95	魯 健, 岡田 浩尚, 伊藤 寿浩, 前田 龍太郎	つくば研究 センター	Integration and Evaluation of Wireless Sensor Nodes for 'Green' Sensor Networks	IUMRS-ICA 2014	2014 年 8 月
96	逆水 登志夫	本部	省エネ実証に入った革新的 センサ・ネットワークシステ ムの開発	第5回 TIA-nano 公開シンポジウム	2014 年 9 月
97	鈴木 雅富, 西野 淳, 井ノロ 優芽, 樋江井 武彦, 橋本 哲	ダイキン工 業㈱	中小規模ビル向け省エネ情 報システムの開発 (第2報)	平成26年度空気 調和・衛生工学会 大会	2014年9月

98	N. Shiraishi, M.Kimura, H. Okada, Y. Ando	つくば研究 センター	ポリマーベース振動式セン サを用いた実証検証の口 頭・論文発表	EUROSENSORS 2014,	2014年9月
99	作石 敏幸, 村山 貴英, 森川 泰宏	(株)アルバッ ク	GSN で進めてきたキャパシ タ性能改善の為の高性能エ ッチングプロセス技術を使 った発表。	第 75 回応用物理 学会秋季学術講演 会	2014 年 9 月
100	N. Shiraishi, M.Kimura, H. Okada, Y. Ando	つくば研究 センター	ポリマーベース振動式セン サを用いた実証検証の口 頭・論文発表	IWMF 2014,	2014年10月
101	三戸 慎也, 竹中 一馬, 加藤 暁之	つくば研究 センター	位置ずれと外部環境磁界の 影響を受けにくい電流セン サ構造に構造に関する論文	第 31 回「センサ・ マイクロマシンと 応用システム」シ ンポジウム	2014年10月
102	山下 崇博, 張 毅, 岡田 浩尚, 伊藤 寿浩, 前田 龍太郎	つくば研究 センター	フィルム型電流センサによ るセンサネットワークの構 築	第 31 回「センサ・ マイクロマシンと 応用システム」シ ンポジウム	2014年10月
103	岡田 浩尚, 伊藤 寿浩	つくば研究 センター	センサネットワーク用低消 費電力無線通信の開発	第 31 回「センサ・ マイクロマシンと 応用システム」シ ンポジウム	2014年10月
104	西野 淳	ダイキン工 業㈱	グリーンセンサを用いたオ フィスの省エネの取り組み	第31回「センサ・ マイクロマシンと 応用システム」シ ンポジウム	2014 年 10 月
105	魯 健, 張 嵐, 岡田 浩尚, 伊藤 寿浩, 前田 龍太郎, 原田 武	つくば研究 センター	Wireless Sensor Nodes with Ultra-low Power Consumption for Low-Frequency Vibration Monitoring	第 31 回「センサ・ マイクロマシンと 応用システム」シ ンポジウム	2014 年 10 月
106	Yi Zhang, Takahiro Yamashita, Toshihiro Itoh, Ryutaro Maeda	つくば研究 センター	Flexible clamp-type current sensor for monitoring of electric consumption	第 31 回「センサ・ マイクロマシンと 応用システム」シ ンポジウム	2014年10月
107	木村 俊博	ローム(株)	センサ端末用自立電源の取り組み	第 31 回「センサ・ マイクロマシンと 応用システム」シ ンポジウム	2014年10月
108	海法 克享, 高橋 英俊, 富松 大, 小林 健, 松本 潔,	つくば研究 センター	無線センサネットワーク端 末のための微小圧力変化検 出スイッチ	第31回「センサ・ マイクロマシンと 応用システム」シ ンポジウム	2014 年 10 月

	下山 勲, 伊藤 寿浩, 前田 龍太郎				
109	岡田 浩尚, 伊藤 寿浩	つくば研究 センター	Development of a wireless sensor network using M-ary FSK Modulation with Short Packet	IEEE Sensors2014	2014年11月
110	田中 純一, 積 知範, 大場 正利, 今本 浩史	オムロン(株)	Low power wireless human detector utilizing thermopile infrared array sensor	IEEE SENSORS 2014	2014年11月
111	Takahiro Yamashita, Yi Zhang, Hironao Okada, Toshihiro Itoh, Ryutaro Maeda	つくば研究 センター	Thin film based flexible current clamp sensor for green wireless sensor networks	IEEE SENSORS 2014	2014 年 11 月
112	村山 貴英, 作石 敏幸, 森川 泰宏, 鄒 弘綱	(㈱アルバッ ク	GSN で進めてきたキャパシ タ性能改善の為の高性能エ ッチングプロセス技術を使 った発表。	IEEE CPMT Symposium Japan(ICSJ 2014)	2014年11月
113	藤本 淳	つくば研究 センター	Energy Saving Measures Obtained from Large-Scale Power Monitoring Experiments in Convenience Stores	Going Green – CARE INNOVATION 2014	2014 年 11 月
114	池田 相野 郡 郡 郡 郡 郡 御 御 七 町 郡 澤 中 村 川 本 二 、 本 二 、 本 二 、 本 二 、 本 二 、 本 二 、 本 二 、 本 二 、 、 、 、 、 、 、 、 、 、 、 、 、	大岡山研究 センター	Development of Fiber-Shaped Organic Photovoltaic Cells by All-Solution Processing under Ambient Conditions for Smart Textiles	8th Aachen-Dresden International Textile Conference	2014 年 11 月
115	前田 龍太郎	つくば研究 センター	センサネットのグリーンお よびライフ応用	第4回次世代プリ ンテッドエレクト ロニクスシンポジ ウム	2014 年 12 月
116	竹井 裕介, 松本 潔, 下山 勲	東京大学	Ionic-gel-coated fabric as flexible humidity sensor	The 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS2015)	2015年1月

117	高橋 英俊, 磯崎 瑛宏, 松本 潔, 下山 勲	東京大学	A cantilever with comb structure modeled by a bristled wing of thrips for slight air leak	The 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS2015)	2015年1月
118	宮内 亮二	東京電力㈱	 東日本大震災以降の省エネ ルギー ~ グリーンセンサ とビッグデータが明かす事 業活動 ~ 	H26 年度 電気使 用合理化セミナー	2015 年 1 月
119	松本 英俊	大岡山研究 センター	有機材料を利用した環境発 電デバイスの開発と自立電 源への展開	センシング技術応 用研究会・第 190 回研究例会	2015 年 1 月
120	海法 克享, 富松 大, 高橋 健, 小林 健, 松本 潔, 下山 勲, 伊藤 龍太郎	つくば研究 センター	圧力変動検出スイッチを付 加したイベントドリブン型 塵埃量センサの開発	精密工学会 2015 年度春季大会	2015 年 2 月
121	松本 英俊, 鴻巣 裕一, 稲垣 サナエ, 齋藤 慶考	大岡山研究 センター	ナノファイバー材料の機能 設計とエネルギーデバイス への展開	電子情報通信学 会・有機エレクト ロニクス研究会	2015 年 2 月

(b)新聞・雑誌への掲載(発表者、所属、発表内容、発表先、発表年月)

	発表者	所属	発表内容	発表先	発表年月
1	NMEMS 技術研究 機構	本部	 特集 センサー技術 革新的センサー NEDO が 開発プロジェクト立上げ 	電波新聞 2011.10.13 13 面	2011 年 10 月
2	NMEMS 技術研究 機構	本部	工場の空調 省電力 オム ロンなど新センサー	日経朝刊 2001.10.17 朝刊 科学技術 12 版	2011 年 10 月
3	NMEMS 技術研究 機構	本部	省エネを推進する革新的技 術開発・・ ・GSN プロジェク ト	電波新聞 2012.01.05 第2部4面	2012年1月
4	オムロン(株), NEDO	オムロン(株)	 世界で初めてウェハレベル 真空封止技術を活用した人 感センサ向け 16x16 素子 MEMS 非接触温度センサを 開発 	国内新聞各社	2013 年 5 月

	NMEMS 技術研究	本部	もう、始まっています。	経済産業ジャ	2013年6月
5	磯構		センサーで節電!	ーナル 2013年6・7月号	
6	東京電力㈱	東京電力㈱	工場の省エネ無償診断,東 電,顧客離れ食い止め	日本経済新聞 7月13日 (朝刊)10面	2013 年 7 月
7	NMEMS 技術研究 機構	本部	見えてきた「バンソウコ ウ・センサ」,1 枚 1000 円で 貼るだけ	日経テクノロ ジーオンライ ン 2013.07.05	2013 年 7 月
8	NMEMS 技術研究 機構	本部	コンビニ改革,電力センサ が増収ツールに,セブン-イ レブンが語る次世代強い店 づくり(1)	日経テクノロ ジーオンライ ン 2013.08.05	2013 年 8 月
9	NMEMS 技術研究 機構	本部	コンビニ改革,コロッケ揚 げる時間帯を変え売上高ア ップ,セブン-イレブンが語 る次世代強い店づくり(2)	日経テクノロ ジーオンライ ン 2013.08.08	2013 年 8 月
10	NMEMS 技術研究 機構	本部	「1億円のエネルギーで40 億円の価値を生めるか」,東 電の節電基準電力会社が進 める顧客向け省エネ・コン サルティングとは(上)	日経テクノロ ジーオンライ ン 2013.08.30	2013 年 8 月
11	NMEMS 技術研究 機構	本部	「生産を減らさず電力ピー クシフト」,東電がセンサで 実現電力会社進める顧客向 け省エネ・コンサルティン グとは(下)	日経テクノロ ジーオンライ ン 2013.09.02	2013年9月
12	NMEMS 技術研究 機構	本部	春だけ 1000 円センサ,実証 から実用へ,グリーンセン サ・ネットワーク・プロジ ェクトを詳説	日経テクノロ ジーオンライ ン 2013.09.19	2013年9月
13	東光電気㈱, 東京電力㈱	東京電力㈱	工場におけるモニタリング を中心としたエネルギーサ ービス	日経ものづく り 2013年9月 号	2013年9月
14	宮内 亮二	東京電力㈱	エネルギー計測データに基 づく生産効率化及び省エネ ルギーの実現	「月刊プラス チックスエー ジ」2013 年 8 月 号	2014 年 8 月
15	NMEMS 技術研究 機構	本部	太陽電池の"布",暗い室内光 でも発電,貼るだけセンサ 向け自立電源を解説	日経テクノロ ジーオンライ ン 2013.10.10	2013 年 10 月

	片岸 誠	つくば研究	センサノード	㈱日立製作所×	2014 年 12 月
		センター	ビッグデータを収集する技	日経エレクト	
			術としてセンサノード関連	ロニクス「ビッ	
16			技術を解説。省電力化技術	グデータを活	
			の一つとして,GSN 成果の	かす「真」の技	
			センサアナログフロントエ	術」	
			ンド回路を紹介。		
	下山 勲	東京大学	4つのセンサ・デバイスを	東京大学プレ	2015 年 1 月
			国際学会 MEMS2015 にて発	スリリース	
17			表,東京大学IRT研究機構が		
			ポルトガル,エストリルに		
			τ		
	奥谷 英司,	本部	MEMS センサーネットワー	NEDO プレスリ	2015 年 2 月
	前田 龍太郎,		クによるエネルギーマネジ	リース	
18	西野 淳,		メントの効果を実証-グリ		
	清田 和宏		ーンセンサーでスマート社		
			会を実現-		
	NMEMS 技術研究	本部	コンビニや工場をセンサー	日経テクノロ	2015 年 3 月
10	機構		で見える化,国プロが最終	ジーオンライ	
19			報告会	ン	
				2015.03.02	

(c)その他(発表者、所属、発表内容、発表先、発表年月)

	発表者	所属	発表内容	発表先	発表年月
1	松本 英俊	大岡山研究セ ンター	NEDO「グリーンセンサ・ ネットワークシステム技術 開発プロジェクト」のご紹 介	東京工業大学産学連 携推進本部メールマ ガジン第 85 号	2011年9月
2	NMEMS 技術 研究機構	本部	レイアウト・メンテナンス フリー,ローコスト MEMS センサが牽引するグリーン センサネットワーク	第2回つくばイノベ ーションアリーナ (TIA-nano)公開シン ポジウム	2011年11月
3	前田 龍太郎	つくば研究セ ンター	グリーンセンサ・ネットワ ークプロジェクトの概要	 第 23 回マイクロマシン/MEMS 展 第一回グリーンセンサ・ネットワークプロジェクト成果報告会 	2012 年 7 月
4	藤本 淳	つくば研究セ ンター	スマートコンビニのための ネットワークシステムの開 発とセブン-イレブン店舗 実装	第23回マイクロマシ ン/MEMS展 第一回グリーンセン サ・ネットワークプ ロジェクト成果報告 会	2012 年 7 月

	西野 淳	ダイキン工業	スマートオフィス(中小オ	第23回マイクロマシ	2012 年 7 月
		(株)	フィス)のためのネットワ	ン/MEMS 展	
~			ークシステムの開発	第一回グリーンセン	
5				サ・ネットワークプ	
				ロジェクト成果報告	
				숲	
	源中 修一	住江織物㈱	スマートオフィス(プレハ	第23回マイクロマシ	2012 年 7 月
			ブオフィス)のためのネッ	ン/MEMS 展	
6			トワークシステムの開発	第一回グリーンセン	
0				サ・ネットワークプ	
				ロジェクト成果報告	
				<u> </u>	
	丸山 元樹	東光電気㈱	スマートファクトリのため	第23回マイクロマシ	2012 年 7 月
			のネットワークシステムの	ン/MEMS 展	
7			用充	第一回クリーンセン	
				リ・イツトワークノ	
				ロシェク下成未報日	
	加藤 睡之	つくげ研究セ	雷力モニタリングを非接触	<u>エ</u> 第23回マイクロマシ	2012 年 7 日
		ンター	で可能にする高感度電流・	$\chi/25 回 (+) = ()$ ン/MEMS 展	2012 - 77
		. ,	磁界センサの開発	第一回グリーンセン	
8				サ・ネットワークプ	
				ロジェクト成果報告	
				숲	
	富松 大	つくば研究セ	特定のイベントで稼働する	第23回マイクロマシ	2012 年 7 月
		ンター	トリガー機能付き塵芥量セ	ン/MEMS 展	
9			ンサー	第一回グリーンセン	
-				サ・ネットワークブ	
				ロシェクト成果報告	
	十夕 十七	へくげ研究や		会 22回っくクロッシン	2012 年 7 日
	半多 竹仁	シスは研究と	$1 \land \checkmark $ 版 $0 \circ 0 $		2012 年 / Л
		~ /	いた区府貨電力 202 派及 こ	ン/MENIS 展 笛—回グリーンセン	
10				サ・ネットワークプ	
				ロジェクト成果報告	
				会	
	白石 直規	つくば研究セ	ガス吸着型ポリマーベース	第23回マイクロマシ	2012 年 7 月
		ンター	振動式 VOC(揮発性有機化	ン/MEMS 展	
11			合物)濃度センサの開発	第一回グリーンセン	
11				サ・ネットワークプ	
				ロジェクト成果報告	
	人士 迷中	+) - > /#+\		会 22 回 - / 2	
	今平 宿史	オムロン(株)	座内13 宜の人体便知可能	弗 23 凹マイクロマン 、MEMS 屋	2012 年7月
			なかクト尿ノレーセンサの 角 蒸	✓/MENIS 展 第二回ガⅡーンセン	
12			元	知 回シリーンビン サ・ネットワークプ	
				ロジェクト成果報告	

13	松本 英俊	東京工業大学	有機半導体ナノファイバー を用いた高効率自立電源の 開発	 第23回マイクロマシン/MEMS展 第一回グリーンセンサ・ネットワークプロジェクト成果報告会 	2012 年 7 月
14	奥 良彰	ローム㈱	屋内照明で発電・蓄電可能 な超小型高効率自立電源シ ステムの開発	 第 23 回マイクロマシン/MEMS 展 第一回グリーンセンサ・ネットワークプロジェクト成果報告会 	2012 年 7 月
15	藤森 司	つくば研究セ ンター	低消費電力センサ端末を実 現するエネルギーマネジメ ント回路・信号処理回路技 術の開発	第23回マイクロマシ ン/MEMS展 第一回グリーンセン サ・ネットワークプ ロジェクト成果報告 会	2012 年 7 月
16	大原 淳士	(㈱デンソー	グリーンセンサ端末機能集 積化技術の開発	 第 23 回マイクロマシン/MEMS 展 第一回グリーンセンサ・ネットワークプロジェクト成果報告会 	2012 年 7 月
17	風間 博之	(㈱NTT データ	PC レスでセンサデータを 集約・クラウド接続可能な コンセントレータの開発	第 23 回マイクロマシ ン/MEMS 展 第一回グリーンセン サ・ネットワークプ ロジェクト成果報告 会	2012 年 7 月
18	竹井 裕介	産業技術総合研究所	技術研究組合 NMEMS 技術 研究機構の紹介パネル	産業技術総合研究所 「日本を元気にする 産業技術会議」 「日本の競争力を創 造する化学産業の将 来展望」シンポジウ ムでのパネル展示・ 説明	2012 年 7 月
19	NMEMS 技術 研究機構	本部	省エネを推進する革新的セ ンサ・ネットワークシステ ムの開発	第3回つくばイノベ ーションアリーナ (TIA-nano)公開シン ポジウム	2012 年 7 月
20	竹井 裕, 逆水 登志夫	産業技術総合 研究所、本部	グリーンセンサ・ネットワ ークシステム技術開発プロ ジェクトの概要	CEATEC JAPAN 2012	2012年10月
21	西岡 優, 丸山 元樹, 小林 津義	東光電気㈱	スマートファクトリのため のグリーンセンサネットワ ークシステムの構築	東光電気製品展示会	2012年11月

	稲葉 亮,	東京大学	グラフェンをチャンネルに	東京大学 Web Site に	2013 年 1 月
	ユ クアンヒョ		もつ電界効果トランジスタ	掲載	
	ン, 竹井 裕		型のガスセンサにおいて,		
22	介,		ゲート電極および絶縁体と		
	松本 潔,		してイオン液体を利用する		
	下山 勲		ことにより、1V以下の定電		
			圧駆動を実現した。		
	前田 龍太郎	つくば研究セ	GSN プロジェクトの概要	第24回マイクロマシ	2013 年 7 月
		ンター		ン/MEMS 展	
23				グリーンセンサ・ネ	
				ットワークプロジェ	
				クト成果報告会	
	伊藤 寿浩	つくば研究セ	見えてきたグリーン MEMS	第24回マイクロマシ	2013 年 7 月
		ンター	センサ端末の姿	ン/MEMS 展	
24				グリーンセンサ・ネ	
				ットワークプロジェ	
				クト成果報告会	
	谷岡 明彦	大岡山研究セ	センサーネットワークシス	第24回マイクロマシ	2013 年 7 月
		ンター	テムにおけるナノファイバ	ン/MEMS 展	
25			ー自立電源の開発	グリーンセンサ・ネ	
				ットワークプロジェ	
				クト成果報告会	
	内山 武	つくば研究セ	イベントドリブン型塵芥量	展示会名:CEATEC	2013年10月
26		ンター	センサの開発	Japan 2013 日時:	
				2013/10/1~10/4	
	青柳 桂一	本部	「センサ技術の課題と現	国交省 第2回社会	2013 年 12 月
27			状」の講演の中でグリーン	インフラのモニタリ	
21			センサネットワークプロジ	ング技術活用推進検	
			ェクトの開発概要	討委員会	
	奥谷 英司	NEDO	プロジェクトの最新成果報	第 25 回ナノ・マイク	2014 年 4 月
			告	ロビジネス展	
28				グリーンセンサ・ネ	
				ットワークプロジェ	
				クト成果報告会	
	前田 龍太郎	つくば研究セ	グリーンセンサ・ネットワ	第25回ナノ・マイク	2014 年 4 月
		ンター	ークシステム後術開発	ロビジネス展	
29			(GSN)プロジェクトの概	グリーンセンサ・ネ	
			要	ットワークプロジェ	
				クト成果報告会	
	伊藤 寿浩	つくば研究セ	見えた! グリーン MEMS セ	第25回ナノ・マイク	2014 年 4 月
		ンター	ンサ端末の姿	ロビジネス展	
30				グリーンセンサ・ネ	
				ットワークプロジェ	
		, <u> </u>		クト成果報告会	
	谷岡 明彦	大岡山研究セ	出来たファブリック型自立	第25回ナノ・マイク	2014 年 4 月
		レター	電源	ロビジネス展	
31				グリーンセンサ・ネ	
				ットワークプロジェ	
				クト成果報告会	

	NMEMS 技術	本部	レイアウト・メンテナンス	第 25 回ナノ・マイク	2014 年 4 月
	研究機構		フリー,ローコスト MEMS	ロビジネス展	
22			が牽引するグリーンセンサ	グリーンセンサ・ネ	
52			ネットワークシステム	ットワークプロジェ	
				クト成果報告会(パネ	
				ル)	
	NMEMS 技術	本部	研究開発項目①:グリーン	第25回ナノ・マイク	2014 年 4 月
	研究機構		MEMS センサの開発	ロビジネス展	
33				グリーンセンサ・ネ	
55				ットリークフロシェ	
				クト成果報告会(ハイ	
	NMEMC 壮佬	- ★ ·☆//	<u> </u>	(ル) (第 25 回土) - マイカ	2014 年 4 日
	NMEMS 抆州 研空機構	本部	研究開発項目②: 無縁通信 機能及び自立雲源機能を抜	用 25 回) ノ・マイク	2014 年 4 月
	10月7117度1再		機能及び日立电源機能を搭載したガリーンセンサ端末	ロビン不不成	
34			取したノリ シビンリ端木 の開発	ットワークプロジェ	
				クト成果報告会(パネ	
	NMEMS 技術	本部	研究開発項目③:グリーン	第25回ナノ・マイク	2014 年 4 月
	研究機構		センサネットワークシステ	ロビジネス展	
25			ムの構築と実証実験	グリーンセンサ・ネ	
55				ットワークプロジェ	
				クト成果報告会(パネ	
				ル)	
	NMEMS 技術	本部	プロジェクト開発計画&推	第25回ナノ・マイク	2014 年 4 月
			進体制	ロビジネス展	
36				クリーンセンサ・ネ	
				ツトワークフロンエ	
				クト成未報百云(ハイ	
	三百 植扣	構河雷機㈱	非接触で雷力使田量を可相	25 回ナノ・マイク	2014 年 4 日
		项的电视(m)	北にする高感度電流・磁界	ロビジネス展	2014
			センサの開発	グリーンセンサ・ネ	
37				ットワークプロジェ	
				クト成果報告会(パネ	
				ル)	
	山下 崇博	産業技術総合	電力使用量「見える化」の	第25回ナノ・マイク	2014 年 4 月
		研究所	ためのセンサネットワーク	ロビジネス展	
38			用フレキシブル電流センサ	グリーンセンサ・ネ	
50				ットワークプロジェ	
				クト成果報告会(パネ	
	+2 +			ル)	
	半多 竹1_ 坊井 がふ	∧ ムロン(株), 古古十学	1 A ン (物体の UU 2) 炒着を用	弗 23 凹アノ・マイク	2014 年 4 月
	百开 稻刀	凩尔八子	いた私用貨电力 CO2 展長センサの開発	レレンイへ展 ガリーンセンサ・ラ	
39				シットマークプロジェ	
				クト成果報告会(パネ	
1	1				

40	白石 直規	オリンパス(株)	センサネットワーク用振動 式VOC(揮発性有機化合物) 濃度センサの開発	第25回ナノ・マイク ロビジネス展 グリーンセンサ・ネ ットワークプロジェ クト成果報告会(パネ ル)	2014 年 4 月
41	海法 克享 高橋 英俊	セイコーイン スツル(㈱, 東京大学	特定のイベントで稼働する トリガー機能付き塵埃量セ ンサの開発	第25回ナノ・マイク ロビジネス展 グリーンセンサ・ネ ットワークプロジェ クト成果報告会(パネ ル)	2014 年 4 月
42	田中 純一	オムロン(株)	人の数と動きがわかる小 型・低消費電力な人感セン サの開発	第25回ナノ・マイク ロビジネス展 グリーンセンサ・ネ ットワークプロジェ クト成果報告会(パネ ル)	2014 年 4 月
43	谷松布仁春源时野村 明英史 一春 彩 一十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十	東京工業大学, 日清紡ホール ディングス(株), 住江織物(株), 信州大学	軽量,フレキシブル,低コス トな高効率自立電源の開発	第25回ナノ・マイク ロビジネス展 グリーンセンサ・ネ ットワークプロジェ クト成果報告会(パネ ル)	2014 年 4 月
44	奥良彰	ローム(株)	メンテナンスフリーな連続 動作が可能な超小型高効率 自立電源システムの開発	第25回ナノ・マイク ロビジネス展 グリーンセンサ・ネ ットワークプロジェ クト成果報告会(パネ ル)	2014 年 4 月
45	藤森司	㈱日立製作所	自立電源の微小なエネルギ ーを高効率に利用する端末 エネルギーマネージメント 回路・センサ信号処理回路 の開発	第25回ナノ・マイク ロビジネス展 グリーンセンサ・ネ ットワークプロジェ クト成果報告会(パネ ル)	2014 年 4 月
46	魯 健 張 毅 末村 康宏 森川 泰宏 富樫 和義 原田 武	産業技術総合 研究所, ㈱デンソー, ㈱アルバック, 大日本印刷㈱, マイクロマシ ンセンター	フレキシブルグリーンセン サ端末機能集積化技術の開 発	第 25 回ナノ・マイク ロビジネス展 グリーンセンサ・ネ ットワークプロジェ クト成果報告会(パネ ル)	2014 年 4 月
47	岡田 浩尚	産業技術総合 研究所	自立型センサネットワーク を可能とする超低消費電力 無線通信技術の開発	第25回ナノ・マイク ロビジネス展 グリーンセンサ・ネ ットワークプロジェ クト成果報告会(パネ ル)	2014年4月

	向井 健	㈱NTT データ	大量センサデータ収集と通	第 25 回ナノ・マイク	2014 年 4 月
48			信コスト低減を実現するコ	ロビジネス展	
			ンセントレータの開発	グリーンセンサ・ネ	
40				ットワークプロジェ	
48 49 50 51 52 53 54 55 56 57				クト成果報告会(パネ	
				12)	
	藤本 淳	産業技術総合	スマートコンビニのための	第 25 回ナノ・マイク	2014 年 4 月
		研究所,	社会実装 グリーンセンサ	ロビジネス展	
49		(㈱セブン-イレ	による省エネ対策・設計技	グリーンセンサ・ネ	
		ブン・ジャパン	術の開発	ットワークプロジェ	
				クト成果報告会(パネ	
		(11) 1			
	丸山 元樹	(㈱東光高岳,	機器・設備毎の原単位管理	第25回ナノ・マイク	2014 年 4 月
	宮内 亮二	東京電力㈱	を可能とするセンサネット	ロビジネス展	
50			ワークシステムの開発	グリーンセンサ・ネ	
				ットワークプロジェ	
				クト成果報告会(ハイ	
		ドノトレナサ			
	四野 冯	ダイキン上美	スマートヒル用低コスト・	弗 25 回ナノ・マイク	2014 年 4 月
		(175)	メンケリンスノリーのクリ	レビン不入展	
51			ーンセンサイツトワークシ	クリーンセンリ・イ	
			スケムの開発	ツトワークプロンエ	
				クト成未報百云(ハイ	
	清水 旫池	直心執受工業	スマートビル田任コスト・	25回ナノ・マイク	2014 年 4 日
	们小 叩口口	同切松于工業	メンテナンスフリーのグリ	第23回/ノ・マイク	2014 + 4 Л
		(149	ーンセンサネットワークシ	ガリーンセンサ・ネ	
52			ステムの開発	ットワークプロジェ	
				クト成果報告会(パネ	
	NMEMS 技術	本部	省エネ実証に入った革新的	第5回 TIA-nano 公開	2014年9月
53	研究機構		センサ・ネットワークシス	シンポジウム	
			テムの開発		
	藤森 司	㈱日立製作所	バッテリーレス無線センサ	2014 テクノロジーコ	2014年11月
54			ーネットワーク	ミュニティ 研究所	
51				技術展示会	
	NMFMS 技術	木邨	王井に肚ろだけでスマート	NEDO フォーラム	2015 年 2 日
	研究機構	네가~~	オフィスを実現するグリー	NEDO / / / Z	2013 + 2 J
55	191 7 L 1/X 111		ンセンサ・ネットワークシ		
			マニシッ ホシーン シン		
	前田 龍太郎	つくば研究セ	グリーンセンサ・ネットワ	最終成果報告会(プレ	2015 年 2 月
56		ンター	ークプロジェクトの成果	ゼン)	
	藤本 淳	産業技術総合	スマートコンビニのための	・ 最終成果報告会(プレ	2015年2月
		研究所	ネットワークシステムの開	ゼン)	
57			発と店舗実装(㈱セブン-イ		
			レブン・ジャパン・産業技		
			術総合研究所)		

	西野 淳	ダイキンエ	中小オフィス用グリーンセ	最終成果報告会(プレ	2015 年 2 月
58		業(株)	ンサネットワークシステム	ゼン)	
			の開発		
	清水 昭浩	高砂熱学工	大規模商業ビル及び大規模	最終成果報告会(プレ	2015 年 2 月
50		業(株)	クリーンルーム用グリーン	ゼン)	
39			センサネットワークシステ		
			ムの開発		
	横坂 雅樹	東京電力㈱	スマートファクトリ(製造	最終成果報告会(プレ	2015 年 2 月
60			ライン)のためのネットワ	ゼン)	
00			ークシステムの開発(東京		
			電力㈱·㈱東光高岳)		
	三戸 慎也	横河電機㈱	グリーンセンサネットワー	最終成果報告会(プレ	2015 年 2 月
61			ク対応高精度コアレス電流	ゼン)	
			センサの開発		
	海法 克享	セイコーイ	イベントドリブン型塵埃量	最終成果報告会(プレ	2015 年 2 月
62		ンスツル(株)	センサの開発(セイコーイ	ゼン)	
			ンスツル(株・東京大学(再		
		(14)	委託))		
	本多 祐仁	オムロン(株)	低消費電力 CO₂濃度センサ	最終成果報告会(プレ	2015年2月
63			の開発(オムロン㈱・東京	セン)	
			大字(冉委託))	日本下田相告人。	
	日右 直規	オリンパス	センサネットワーク用 VOC	最終成果報告会(ブレ	2015 年 2 月
64		(休)	(揮発性有機化合物)濃度	セン)	
			センサの開発 (オリンハス)		
		ナノロン(押)	(林・信州人子 (丹安北)		2015 年 2 日
65	田中 祀一	オムロン(株)	八件快知と助さかわかる小	取於成未報古云(ノレ	2015 年 2 月
05			空・低伯貨电刀な小外隊ノ		
	松木 苦依		ナノファイバーを田いた枢		2015 年 2 日
	位平 关夜	来示工未八 学	量 フレキシブルか高効率	取形成不報日云(ノレ	2013 + 2 J
		Ŧ	単, シレイシンルな間効平 自立電源とスマート植物工		
66			場(東京工業大学・日清紡工		
			ールディングス・住江織物		
			(株·信州大学(再委託))		
	奥良彰	ローム(株)	メンテナンスフリーな連続	最終成果報告会(プレ	2015年2月
67			動作が可能な超小型高効率	ゼン)	
			自立電源システムの開発	,	
	藤森 司	㈱日立製作	自立電源の微小なエネルギ	最終成果報告会(プレ	2015 年 2 月
		所	ーを高効率に利用する端末	ゼン)	
68			エネルギーマネジメント回		
			路・センサ信号処理回路の		
			開発		
	富樫 和義	大日本印刷	グリーンセンサ端末機能集	最終成果報告会(プレ	2015 年 2 月
		(株)	積化技術の開発(産業技術	ゼン)	
69			総合研究所・㈱デンソー・		
07			(㈱アルバック・大日本印刷		
			「㈱・マイクロマシンセンタ		
70	岡田 借尚	産業技術総	センサネットワーク用超低		2015年2月
/0		合研先所	Ⅰ月賀竜刀燕禄連信抆術の開	[℃ン)	
1		1	光	1	

	向井 健	(㈱NTT デー	大量センサデータ収集と通	最終成果報告会(プレ	2015 年 2 月
71		タ	信コスト低減を実現するコ	ゼン)	
			ンセントレータの開発		
	荒川 雅夫	マイクロマ	グリーンセンサ・共通プラ	最終成果報告会(プレ	2015 年 2 月
72		シンセンタ	ットフォーム特許網の構築	ゼン)	
		<u> </u>			
	藤本 淳	産業技術総	スマートコンビニのための	最終成果報告会(パネ	2015 年 2 月
		合研究所,	ネットワークシステムの開	ル)	
73		(㈱セブン-	発と店舗実装		
		イレブン・			
		ジャパン			
	西野 淳	ダイキンエ	天井に貼るだけでスマート	最終成果報告会(パネ	2015 年 2 月
74		業(株)	オフィスを実現するセンサ	1レ)	
/ 4			ネットワークシステムの開		
			発		
	横坂 雅樹	東京電力	スマートファクトリ(製造	最終成果報告会(パネ	2015 年 2 月
75		(株),	ライン)のためのネットワ	ル)	
		㈱東光高岳	ークシステムの開発		· _
	三戶 慎也	横河電機(株)	多芯電線上で電流計測を可	最終成果報告会(パネ	2015 年 2 月
76			能にする貼付型電流センサ	ル)	
			の開発		
77	海法 克享	セイコーイ	イベントドリブン型塵埃量	最終成果報告会(パネ	2015年2月
		シスツル(株)			
78	本多 祐仁	オムロン(株)	低消費電力 CO2濃度センサ	最終成果報告会(パネ	2015 年 2 月
70	日石 但規	オリンハス	センサネットワーク用 VOC	最終成果報告会(ハネ 、)	2015 年 2 月
79		(㈱,信州人	(揮発性有機化合物) 涙皮	<i>)</i> (
	田山然。	子	センリの開発 広 数 油 座 な 白 ト し た 小 刑	単数式田却生会へぷう	2015 年 2 日
80		X X L > (M)	心谷述及を向上した小室・	取於风木牧口云(八个	2013 H 2 H
80			12日貢电/14/05/16/17))))	
	公岡 明彦		ナノファイバーを田いた軽		2015 年 2 日
	松本 革傍	↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	量 フレキシブルか高効率		2013 – 2 Л
	高川 正中	」, 『 店 /// ホールディ	自立電源の開発	/• /	
	佐々木 直一	ングス(株)			
81	青塚 聡	住江織物			
	源中 修一	(株).			
	杉野 和義	信州大学			
	木村 睦				
	奥 良彰	ローム(株)	メンテナンスフリーなグリ	最終成果報告会(パネ	2015年2月
82			ーンセンサネットワーク端	ル)	
02			末を実現する超小型高効率		
			自立電源システムの開発		
	藤森 司	㈱日立製作	環境エネルギーを高効率に	最終成果報告会(パネ	2015 年 2 月
83		所	利用するセンサ端末用アナ	ル)	
			ログ回路技術の開発		

84	魯 健 張 毅 北村 康宏 森川 泰宏 富樫 和義 原田 武	産業 積 術 総 合 研 デ ン ソ ー , ア ル バ ッ ク , 大 日本 印 マ イ ク ン マ ン ン ・ 、 、 (株) デ 、 、 、 、 、 、 、 、 、 、 、 、 、	グリーンセンサ端末機能集 積化技術の開発	最終成果報告会(パネ ル)	2015 年 2 月
85	岡田 浩尚	産業技術総 合研究所	短電文化を用いた超低消費 電力無線通信技術の開発	最終成果報告会(パネ ル)	2015 年 2 月
86	宮内 亮二	㈱NTT デー タ	多様なセンサネットワーク システムの導入を低コスト に実現するコンセントレー タの開発	最終成果報告会(パネ ル)	2015 年 2 月
87	山下 嵩博	産業技術総 合研究所	電力使用量「見える化」の ためのセンサネットワーク 用フレキシブル電流センサ	最終成果報告会(パネ ル)	2015年2月

. 1	- 1		\cap	\cap	\cap	0	0	\cap	
		5	()	()	ч		$\prec -$	()	
		0	U.	v	0	U.	U	0	