

TIA-NMEMSシンポジウム Part

■セッション3 TIA-NMEMSが実現する新規アプリケーション開拓

グリーンモニタリングを可能とする

超低消費電力・低コストセンサネット

株式会社 日立製作所 中央研究所 計測システム研究部 後藤 康

1. グリーンモニタリング・(アンビエント)制御

オフィスビル

クリーンルーム

在席状態、気温、湿度、天気などの情報をもとに、照明や空調を制御

装置稼動状態、作業者、気温、 湿度、異物、差圧などの情報を もとに、照明、空調、用役を制御

環境・設備の状態をセンシング・制御し、快適と省エネを両立

2. グリーンモニタリング・制御システム

「情報→知識→サービス」のサイクルで、より良い社会を実現

ブロードギャザリング

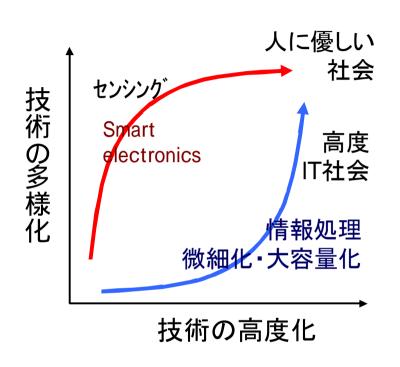
·膨大なユーザーの 環境情報を収集 インテリジェントコンピューティング

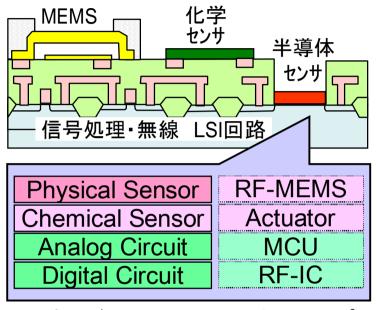
・ユーザーニーズの理解

複雑ネットワーク解析 サービス科学

・センサ、電子デバイス ・ネットワーク、セキュリティ

知覚的マンマシン インターフェース アンビエント制御


- クリーンルームの環境制御(G-MEMS)
- ・植物工場の最適管理(G-MEMS)
- ・オフィスのアンビエント空調・照明


サービスフィードバック

・ニーズに合致したサービスを提供

3. グリーンモニタリングのための半導体デバイス

環境とダイレクトに会話するチップ

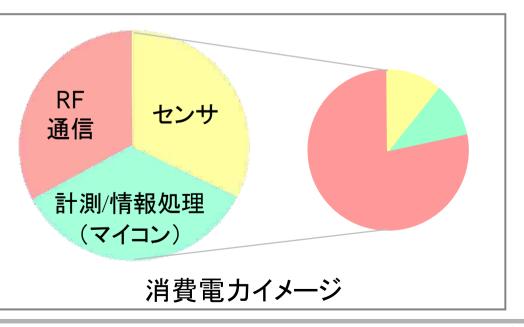
微細化・大容量化から多機能集積化へ

情報処理とセンシングの融合

■センサーマイコンーRF(無線通信)機能をモジュール化

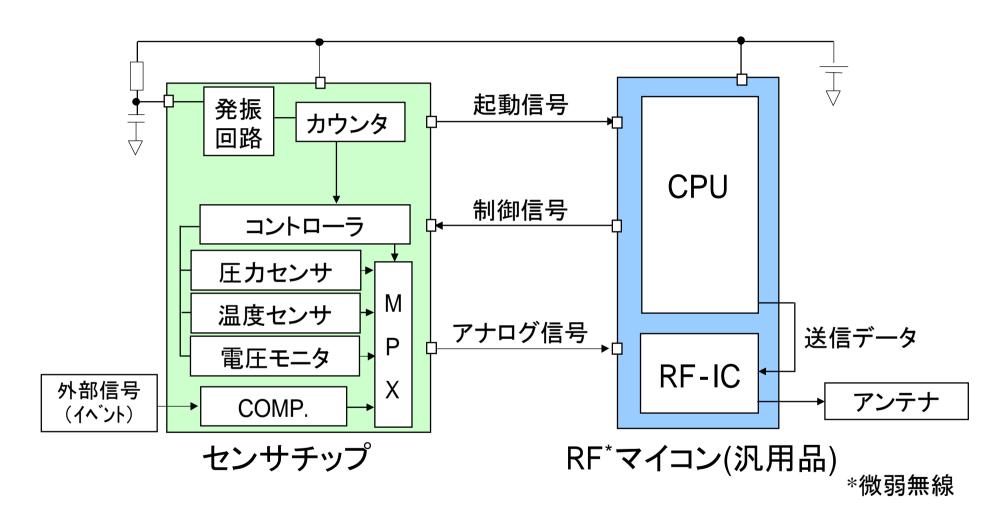
グリーンモニタリング センサネット

4. 超低電力センサネットモジュール



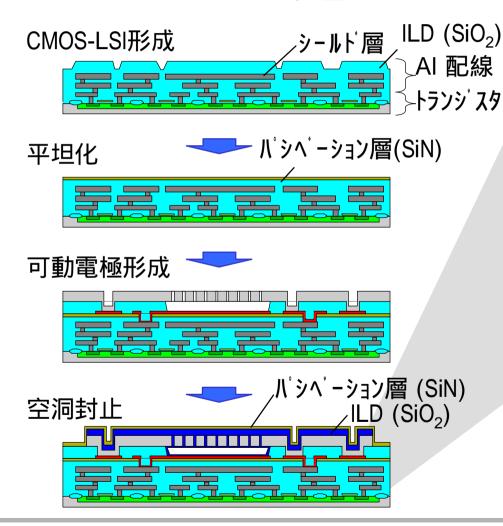
グリーンモニタリング センサネットの課題

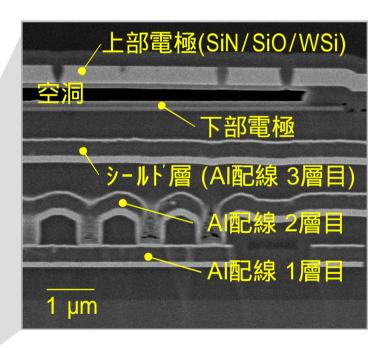
- 1. グリーンモニタリングセンサの小型・集積化 温度、湿度、圧力、照度、異物、ガス、土壌、電圧、電流....
- 2. センサネットモジュールの長期動作(低電力化、自立化)
- 3. システム効果(省エネルギー、(快)適性)の検証


<超低電力化の検討>

- •センサチップの低電力化
- ・マイコン、RF系の起動、 停止制御

5.センサチップ制御によるモジュール構成




•一定周期でCPU・センサチップを起動

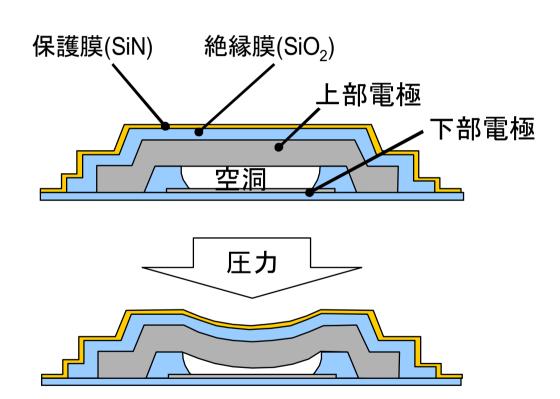
6.集積センサチップ製造技術

LSIの配線材料、配線プロセスと互換性のある「配線MEMS技術」 450 以下の低温プロセスでMEMSをLSI上に集積化

断面電子顕微鏡写真

NEDO「高集積・複合MEMS製造技術 開発事業」の助成により実施した成果

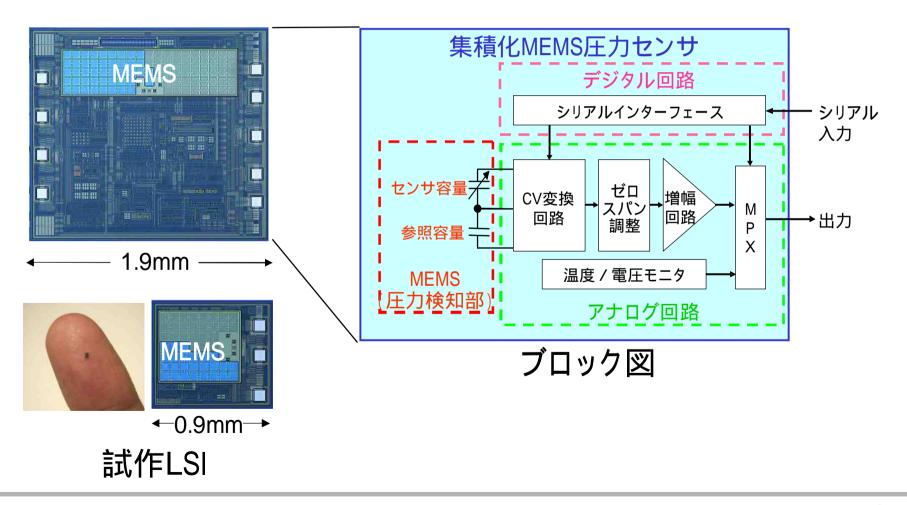
7. 検証用センサ(圧力センサの低電力化)


測定原理

上部電極変形 (電極間距離変化)

静電容量値変化

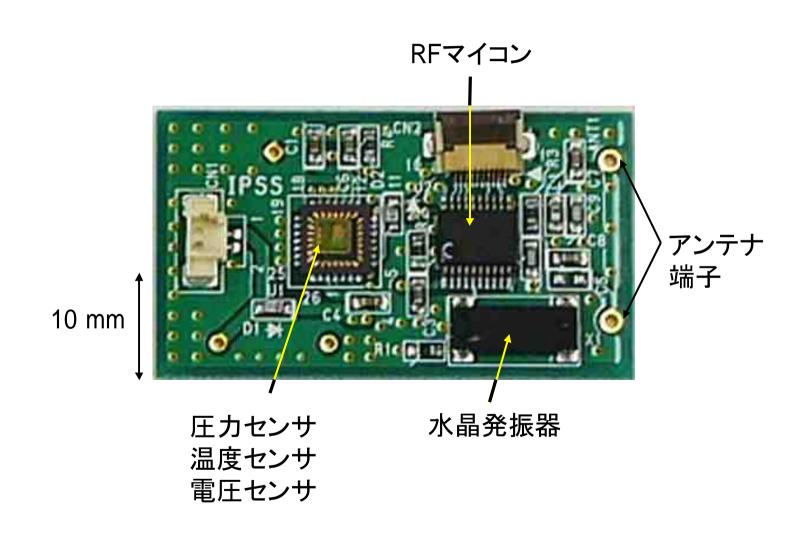
静電容量式の特長


- ●消費電流:低
- -温度影響:低
- ・圧力測定範囲調整:容易 (表面絶縁膜厚、空洞径)
- •狭ギャップ化で高感度化

8. 集積センサチップ

圧力、温度、電圧センサと アナログ/デジタル回路を集積化 世界最小クラスの高感度圧力センサを実現

9. 集積MEMS圧力センサスペック



	圧力・温度・電圧 センサ	(単機能) 圧力センサ				
チップサイズ	1.9 × 1.7 mm ²	$0.9 \times 0.8 \text{ mm}^2$				
圧力タイプ	Air/絶対圧					
センサ出力	アナログ					
圧力検出範囲	50 ~ 150 kPa (abs.)*					
温度センサ	内蔵	-				
出力電圧	0.5 ~ 2 V (@供給電圧3V)					
出力調整回路	内蔵	-				
供給電圧(VDD)	2.6 ~ 5.0V					
動作電流(@3.3V)	< 1mA	< 1mA				
待機電流	< 1 µ A	-				
クロック周波数	内蔵(40 kHz)					
動作温度	-20 ~ 85					

^{*}MEMSダイヤフラムサイズにより調整可能

10. センサネットモジュール試作品

11.モジュール消費電流の見積り

	実行条件		定期的な計測			外部信号による計測		
	電流 (mA)	処理 時間 (ms)	間隔 (s)	回数 (5年)	電流 量 (mAh)	間隔 (s)	回数 (5年)	電流 量 (mAh)
Sleep解除、初期化	0.7	10	60	2628000	5.1	600	262800	0.5
圧力計測	2	5		2628000	7.3		262800	0.7
温度計測	0.8	0.4		2628000	0.2		262800	0.0
電圧計測	0.8	0.4		2628000	0.2		262800	0.0
演算処理	0.7	10		2628000	5.1		262800	0.5
送信	7.5	20		2628000	109.5		262800	11.0
受信(外部信号)	0.4	20		_			262800	0.6
待機	0.001		_		43.8	_		43.8
消費電流					171.3			57.1

5年間連続と仮定

12.まとめ

- 1. 社会環境の変化により、従来とは異なる価値感 (成長性、効率性 環境、安心、安全性) から、グリーンモニタリングの重要性が増加
- 2. グリーンモニタリングに必要な電子デバイス
 - 機能集積センサネットモジュール
 - •長期動作、低消費電力化:センサチップ制御方式
 - ・小型化、半導体プロセスでの製造(低コスト化)
- 3. 今後の予定(GMEMSプロジェクト)
 - •他のセンサ機能のモジュール集積
 - ・計測アナログ回路の省電力化

本報告の一部は、NEDO「高集積・複合MEMS製造技術開発事業」の助成により実施した成果である。